IL-1 Receptor Antagonist Inhibits Pancreatic Cancer Growth
by Abrogating NF-κB Activation

Zhuonan Zhuang1,2#, Huaiqiang Ju1,3#, Mitzi Aguilar1, Takashi Gocho1,4, Hao Li1,3, Tomonori Iida1,4, Harold Lee1, Xiaoqiang Fan1, Haijun Zhou1, Jianhua Ling1, Zhongkui Li1, Jie Fu1, Min Wu1, Min Li5, Davide Melisi6, Yoichiro Iwakura, D. Sc.7, Kesen Xu8, Jason B. Fleming9, Paul J. Chiao1,10*

1Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States;
2Department of General Surgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing 102218, China;
3Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
4Department of Surgery, Jikei University School of Medicine, Tokyo 1058461, Japan;
5Department of Surgery, The University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, Oklahoma City, OK 73104, United States;
6Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy.
7Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan;
8Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, China;
9Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States;
Cancer Biology Program of the University of Texas Graduate School of Biomedical Sciences at Houston

Equal Contribution

*Correspondence to:

Paul J. Chiao, Department of Molecular and Cellular Oncology, Unit 107, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; phone: 713-794-1030; fax: 713-794-4830; e-mail: pjchiao@mdanderson.org.
Abstract

Purpose: Constitutive NF-κB activation is identified in about 70% of pancreatic ductal adenocarcinoma (PDAC) cases and is required for oncogenic KRAS-induced PDAC development in mouse models. We sought to determine whether targeting interleukin-1α (IL-1α) pathway would inhibit NF-κB activity and thus suppress PDAC cell growth.

Experimental Design: We determined whether anakinra, a human IL-1 receptor (rhIL-1R) antagonist, inhibited NF-κB activation. Assays for cell proliferation, migration, and invasion were performed with rhIL-1R antagonist using the human PDAC cell lines AsPc1, Colo357, MiaPaCa-2, and HPNE/K-rasG12V/p16sh. *In vivo* NF-κB activation-dependent tumorigenesis was assayed using an orthotopic nude mouse model (n=20, 5 per group) treated with a combination of gemcitabine and rhIL-1RA.

Results: rhIL-1R antagonist treatment led to a significant decrease in NF-κB activity. PDAC cells treated with rhIL-1R antagonist plus gemcitabine reduced proliferation, migration, and invasion as compared with single gemcitabine treatment. In nude mice, rhIL-1R antagonist plus gemcitabine significantly reduced the tumor burden (gemcitabine plus rhIL-1RA vs. control, *P*=0.014).

Conclusions: We found that anakinra, an FDA-approved drug that inhibits IL-1 receptor (IL-1R), when given with or without gemcitabine, can reduce tumor growth by inhibiting IL-1α -induced NF-κB activity; this result suggests that it is a useful therapeutic approach for PDAC.

Keywords: Pancreatic cancer · NF-κB pathway · IL-1α · Gemcitabine · Inhibition
Translational relevance

KRAS mutation is found in almost 90% of pancreatic cancers. Modeling pancreatic cancer in mice with oncogenic KRAS recapitulated key features of the pathogenesis of this disease. Several recent studies have shown that NF-κB activation is required for oncogenic KRAS-driven PDAC, as NF-κB inhibition led to tumor suppression. However, systematic inhibition of NF-κB will also affect function of normal cells, such as T-cells, leading to complications when NF-κB inhibitors are used in treatment. Our results show that IL-1α overexpression functions as a mechanistic link between constitutive activation of NF-κB and mutant KRAS in PDAC patients. IL-α is targeted by an FDA-approved IL-1R antagonist as treatment for autoimmune disorders. On the basis of our findings and the existence of an IL-1R antagonist, pharmacologically targeting IL-1α overexpression by blocking IL-1 receptor (IL-1R) may improve PDAC patient survival.
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the United States (1, 2). Mutational activation of KRAS is detected in almost 90% of PDAC cases (2). Recent studies have shown that mutant KRAS is required not only for the initiation of PDAC but also for maintaining the tumorigenic phenotype (3, 4). We previously identified the KRASG12D-induced constitutive nuclear factor-κB (NF-κB) in PDAC cells and patient samples (5, 6). Our recent study demonstrated that NF-κB activation is required for mutant KRAS to induce PDAC (6).

As targeting mutant RAS proteins directly with small-molecule inhibitors has so far proved unsuccessful, one of the ideas is to identify key signaling pathways that function downstream of RAS and that inhibiting such signaling pathways may lead to tumor suppression (7, 8). NF-κB represents an important signaling pathway that is required by mutant KRAS in PDAC development (6). NF-κB transcription factors are involved in the regulation of cell proliferation, apoptosis, and inflammatory responses and in the stimulation of invasion and metastasis to promote multiple aspects of cancer development and progression (9). Some of the pro-inflammatory factors, such as interleukin-1 (IL-1) and tumor necrosis factor-α, are regulated by NF-κB, also potent inducers of NF-κB, and strongly associated with most types of PDAC (10). For example, we showed that oncogenic KRAS activates NF-κB constitutively through the IL-1α autocrine mechanism in vivo (6), and overexpression of epidermal growth factor receptor (EGFR) in PDAC induced IL-1α expression through AP-1 activity (10). Autocrine stimulation of IL-1α induced the constitutive activation of NF-κB (11). Furthermore, a number of chemotherapy agents, such as gemcitabine, a standard of care for PDAC (12), are able to activate NF-κB in pancreatic cancer cells and result in chemo-resistance. Thus, NF-κB has been proposed as a target for PDAC.
NF-κB inhibition with non-specific or specific inhibitors, such as glucocorticoids, natural products, is an attractive approach to cancer treatment (13). NEMO (IKKγ) is a target that can be blocked by a cell-permeable NEMO-binding domain, inhibiting cell growth by down-regulating NF-κB activation and NF-κB-dependent gene expression (14). Previous studies in our laboratory showed that inhibition of TAK1 kinase activity decreased the activation of the transcription factors NF-κB and AP-1 in vivo and may be a valid method of reducing the intrinsic chemo-resistance of PDAC (15). Taken together, these studies suggest that NF-κB signaling pathway is a therapeutic target for inhibiting PDAC growth.

Systematic inhibition of NF-κB may cause severe side effects (9), thus, how to target NF-κB requires substantially more research before it is ready to be tested in clinical trials. One potential approach is to target IL-1 receptor (IL-1R) as it serves as a mechanistic link to mutant KRAS-induced NF-κB activation. Therefore, IL-1R antagonist, an FDA-approved drug for certain autoimmune diseases, may inhibit NF-κB activation by targeting the IL-1 receptor (IL-1R) (16) and may be useful clinically as a treatment for PDAC (17).

The aim of this study was to identify a novel therapeutic approach that targets key signalling pathways that function downstream of RAS and to determine whether inhibiting such signalling pathways may lead to tumor suppression of PDAC cells in orthotopic xenograft mouse model. We found that rhIL-1RA significantly reduced the tumorigenesis in PDAC cells and resistance of PDAC to chemotherapeutic agents both in vitro and in vivo.
Materials and Methods

Cell lines and reagents

The human PDAC cell lines AsPc1 and MiaPaCa-2 were purchased from American Type Culture Collection (Manassas, VA). The Colo357 cell line was obtained from the laboratory of Dr. Isaiah J. Fidler. HPNE cell line was obtained from Dr. James W. Freeman at the University of Texas Health Science Center at San Antonio (Texas) [18]. Our lab built the HPNE/KRASG12v/P16sh cell line as previous report [19]. KRAS/P53m/+ cell line was established from PDAC found in pancreas of Pdx1-cre/KRASLSL-G12D/p53LSL-R273H mice. 4 low passage PDX cells were obtained from Dr. Fleming’s lab. All cell lines used in this study were maintained as monolayer cultures in DMEM (Caisson Labs, Inc. North Logan, USA) that contained L-glutamine and 15 mM HEPES and were supplemented with 10% heat-inactivated fetal bovine serum and penicillin (100 IU/mL) and streptomycin (100 μg/mL) in an atmosphere of 5% carbon dioxide at 37°C. Anakinra, which was purchased from SOBI, is a rhIL-1 R antagonist that is recommended for rheumatoid arthritis and cryopyrin-associated periodic syndromes. In general, 10 ng/mL of IL-1α is used to activate NF-κB. IL-1 R antagonist is the most important regulatory molecule for IL-1α activity and it is usually produced in a 10- to 100- fold molar excess [20]. Because of the short half-life of IL-1R antagonist, which is about 4-6 hours, we used 1000- fold molar excess for complete inhibition \textit{in vitro} experiments. 1.5 mg/kg was used in orthotopic xenograph model of PDAC. This dosage is converted from human usage (100 mg/daily) and this conversion is based on the table in other research [21]. Gemcitabine hydrochloride was purchased from SIGMA, Inc. N-acetyl-L-cysteine (NAC) was used to inhibit the ROS (Cell Signaling Technology, Danvers, USA). VivoGlo luciferin, \textit{in vivo} grade (Promega, Inc.), is the potassium salt of D-luciferin, the firefly luciferase substrate that is capable of generating light when a suitable model is used. Isoflurane, liquid
for inhalation, is manufactured by Baxter Healthcare Corporation.

Western blot analysis

The cell lysates from all human PDAC cell lines were lysed in radioimmuno-precipitation assay protein lysis buffer. The nuclear extracts were prepared according to the method of Andrews and faller [18, 22]. Briefly, cells are pelleted for 10 seconds and resuspended in 400 μl cold Buffer A (10 mM HEPES-KOH pH 7.9 at 4°C, 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM dithiothreitol, 0.2 mM PMSF) by mixing with a vortex. The cells are set on ice for 10 minutes for swelling and then vortexes for 10 seconds, and are centrifuged for 10 seconds, and are centrifuged for 10 seconds, and the supernatant fraction is saved as crude cytoplasm extract. The pellet is re-suspended in 20-100μl (according to starting number of cells) of cold Buffer C (10mM HEPES-KOH pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl₂, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2 mM PMSF) and incubated on ice for 20 min for high-salt extraction. Nuclear extracts are collected and cleared by centrifugation. The SDS-PAGE gel/western blot analysis were performed according to the method of Towbin and Burnette [23, 24]. A total of 30 μg of protein extracts was loaded and run on the gel and then transferred to nylon membranes (Immobilon-P, Millipore, Bedford, MA) to detect NF-κB, the phosphorylation of, NF-κB, TAK-1 phosphorylation of, TAK1, cleaved caspase-3, poly ADP-ribose polymerase (PARP), cyclin D1, and Tab1 (Cell Signalling Technology, Danvers, USA), IL-1α, ERK phosphorylation, ERK, caspase-3, and IκBα (Santa Cruz Biotechnology, Dallas, USA).

PCR analysis

Total RNA was extracted from mouse tail tissue. RNA quality and quantity were measured using an
ND-2000 spectrophotometer (Nanodrop). cDNA was synthesized using the PrimeScript RT Master Mix (Bio-Rad). cDNA (20 ng) was subjected to PCR with SYBR reagents and the IQ5 PCR system (Bio-Rad, Hercules, CA). The following primers were used: IL-1α MT primer, forward: 5’-CTTGGCCATACTGCAAAGGTCATG-3’ and reverse: 5’-GAGGTGCTGTTTCTGGTCTTCACC-3’; and IL-1α WT primer, forward: 5’-ATTGTGAAAAGCCAGGGATG-3’ and reverse: 5’-CGTCAGGCAGAAGTTTGTCA-3’.

MTT assay for measuring proliferation: AsPc1 PDAC cells were seeded in 96-well plates (3×10³ cells/well). After 12 h, attached cells were treated with different concentrations of gemcitabine or rhIL-1R antagonist. Drug-treated cells were analyzed after being incubated for 24 h, 48 h, 72 h, or 96 h. Next, a 5 mg/mL MTT solution was added to the cultures for an additional 3-4 h. Finally, the medium containing MTT was aspirated off, and 100 μL of DMSO solution was added. Living cells formed crystals because of the presence of MTT. The absorbance of crystals dissolved by DMSO was read at 490 nm by an immunosorbsent instrument.

Flow cytometry assay for measuring apoptosis: AsPc1 PDAC cells were incubated in 6-well dishes for 48 h. Cells were washed twice with cold PBS and then resuspended in 1X binding buffer (0.1M Hepes, pH7.4, 1.4M NaCl, 25 mM CaCl₂) at a dose of 1x10⁶ cells/mL. Next, 100 μL of the solution (1x10⁵ cells) was transferred to a 5-mL culture tube, and 5 μL Propidium Iodide (BD Pharmingen, Inc. San Diego, USA) and 5 μL APC Annexin V (BD Pharmingen, Inc. San Diego, USA) were added. The cells were gently vortexed and incubated for 15 min at 25°C in the dark. After the tubes had been incubated, 400 μL of 1X binding buffer was added; the tubes were analyzed by flow cytometry within 1 h.

Colony formation assay: Using 6-well dishes, AsPc1 PDAC cells were cultured at 500 cells per well.
They were then treated with 5 μg, 10 μg, or 20 μg/mL rhIL-1RA, with or without 10 μM of gemcitabine, for 2 weeks. A statistical analysis was performed by counting the number of colonies that were fixed with formalin (Sigma, St.Louis, USA) within 30 min and stained with crystal violet (Sigma, St.Louis, USA) within 1 h.

Matrigel invasion test: AsPc1 PDAC cells in 24-well dishes (1x10⁵ cells/well) were treated with 10 μM of gemcitabine, with or without 5 μg/mL, 10 μg/mL, or 20 μg/mL of rhIL-1R antagonist overnight. The invasion capability was observed on a Biocoat Matrigel (a soluble basement membrane) invasion chamber (Fisher Scientific, Ottawa, USA).

Wound healing assay: AsPc1 PDAC cells were cultured on 6-well plates (3x10⁵ cells/well) until the cells were confluent. The monolayers were scratched horizontally with a 1-mL pipette tip. The media were replaced after the dislodged cells were aspirated and cleaned. The AsPc1 cells were then incubated with 10 μM of gemcitabine, with or without 5 μg, 10 μg, or 20 μg/mL rhIL-1R antagonists. The cells were incubated overnight; cell invasion was observed and images were photographed in each well using a phase contrast-inverted microscope.

TUNEL assay: Slices of AsPc1 PDAC tissue were stained by the TUNEL assay using the Situ cell death detection kit and fluorescein (Roche Diagnostics, Indianapolis, IN, USA) to evaluate apoptosis induction. The number of TUNEL-positive cells was counted and photographed.

Histological and immunohistochemical analyses: The PDAC tissues were excised 1 day after the end of treatment. Formalin-fixed, paraffin-embedded tissue sections were subjected to immunostaining using the streptavidin-peroxidase technique, with diaminobenzidine as a chromogen. Hematoxylin and eosin (H&E) and immunohistochemical analyses were conducted according to standard procedures. For antigen retrieval, the sections were subjected to heat in 0.01 M citrated buffer. Sections were incubated
at 4°C overnight with the primary rabbit anti-human monoclonal antibody anti-NF-κB phos-p65 (Cell Signaling Technology) (1:100 dilution), the primary mouse anti-human monoclonal antibody anti-p-ERK (Santa Cruz Technology) (1:150 dilution), or the primary mouse anti-human monoclonal antibody anti-Ki67 (NeoM) (1:200 dilution). Slides were washed in Tris-buffered saline buffer and incubated for 30 minutes with the appropriate horseradish peroxidase-conjugated secondary antibody before being counterstained with Meyer’s hematoxylin (Peroxidase Detection System; Leica Microsystems, Inc., Wetzlar, Germany). To ensure antibody specificity, consecutive sections were incubated with isotype-matched control immunoglobulins and no primary antibody. The expression levels of Ki67, activated p65, and ERK were detected as nuclear brown staining of varying intensities in neoplastic cells. The slides were evaluated independently using light microscopy.

PDAC orthotopic xenograft model: Twenty 4-6-week-old male athymic nude mice (NCI-nu), which weighed approximately 24.9-33.0 g, were purchased from the Animal Production Area of the National Cancer Institute-Frederick Cancer Research Facility (Frederick, MD). Five 4-6-week-old male WT mice were purchased from the Jackson Laboratory, Inc. An additional five male IL-1α−/− mice were purchased from the Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo (Tokyo, Japan).

All mice were housed and treated in accordance with the guidelines of The University of Texas MD Anderson Cancer Center’s Animal Care and Use Committee and were maintained in specific pathogen-free conditions. The facilities were approved by the Association for Assessment and Accreditation of Laboratory Animal Care; they meet all current regulations and standards of the US Departments of Agriculture and Health and Human Services and the National Institutes of Health.

For the nude mouse orthotopic xenograft model, AsPc1 PDAC cells were harvested in PBS with 20%
Matrigel (Fisher Scientific). Tumor cells (1.0x10^6 cells in 50 μL of PBS) were then injected subcapsularly into the pancreatic tissue of nude mice, under the spleen. We used 1-mL syringes and 30-gauge needles (Hamilton Company, Reno, NV) to inject AsPc1 PDAC cells. Wound clips (Braintree Scientific, Inc.) were used to close the abdominal incisions and were removed after the incisions had healed, about 10 days later. For the in vivo studies, 1.5 mg/kg intraperitoneal rhIL-1 R antagonist and 25 mg/kg intraperitoneal gemcitabine, diluted with PBS, were used to treat the nude mice daily for 4 weeks. All mice were weighed weekly and observed for tumor growth during the 4-week treatment. A cryogenically cooled IVIS 100 imaging system used to detect the orthotopic xenograft tumor size as emitted photons collected and sent through a camera to a data acquisition computer running Living Image Software (Xenogen, Hopkinton, MA).

For the genetically engineered mouse orthotopic xenograft model, KRAS/p53−/− mouse tumor cells were harvested in PBS with 20% Matrigel. The injection method was the same as that for the nude mouse orthotopic xenograft model. After 3 weeks, all mice were euthanized by carbon dioxide inhalation and the tumor tissues were dissected.

Statistical analysis: All statistical analyses were conducted using SPSS 19.0 software. The significance of the data was determined using a paired or independent-sample t test. For error bars in all experiments, values represent the mean ±SD, as determined by GraphPad Prism 5 software (GraphPad Software, San Diego, CA). All statistical tests were two-sided, and P < 0.05 was considered statistically significant.

Results

Inhibition of IL-1 receptor (IL-1R) activation downregulates NF-κB and IL-1α autocrine
stimulation of PDAC cells

In a panel of 9 human PDAC cell lines and 2 immortalized human pancreatic epithelial cell lines (HPNE and HPNE/Vec), we observed high levels of phosphorylated p65NF-κB, indicating that NF-κB is activated in these PDAC cell lines (Fig. 1A). This is consistent with the EMSA results from our previous study (6, 25). Our recent study showed that the NF-κB-regulated IL-1α feed-forward loop was essential for inducing and sustaining constitutive NF-κB activation in PDAC cells expressing mutant KRAS (6). To verify whether inhibition of the IL-1α autocrine stimulation suppressed NF-κB activation, we treated AsPc1 cells with rhIL-1R antagonist. NF-κB activity was reduced in cells treated with rhIL-1RA at doses of 5, 10, and 20 μg/mL for 4 hours (Fig. 1B, left) and in the nuclear extract of AsPc1 cells (Fig. 1B, right). Even when stimulated by IL-1α (10 ng/mL), NF-κB activation in AsPc1 cells was suppressed by rhIL-1RA at doses of 10 and 20 μg/mL (Fig. 1C). We also treated 4 PDX cell lines with rhIL-1RA at doses of 5, 10, and 20 μg/mL, and the phosphorylated NF-κB was inhibited by rhIL-1RA(Fig. S1). In addition, we found that activation of phosphorylated ERK was inhibited by rhIL-1RA at 4 hours (Fig. 1D). Taken together, these results demonstrate that inhibition of IL-1 receptor (IL-1R) activity is able to decrease NF-κB activity and IL-1α expression of PDAC cells, suggesting that IL-1 receptor (IL-1R) is a potential surrogate therapeutic target for NF-κB.

Gemcitabine induced NF-κB and ERK activity in PDAC cells

To demonstrate whether gemcitabine-activated NF-κB can be inhibited by rhIL-1 receptor antagonist (rhIL-1RA), we initially treated the AsPc1 cell line with three different doses of gemcitabine (5, 10, and 20 μM) for 4 hours. We found an increase in phosphorylated NF-κB levels in the whole cell and nuclear extracts of gemcitabine-treated AsPc1 cells (Fig. 2A), which is consistent with the previous study that
shows gemcitabine induces NF-κB activation (26). To confirm the involvement of ROS in the activation of NF-κB, we detected NF-κB activation status and found suppression in AsPc1 cells incubated with NAC 1 hour prior to gemcitabine treatment (Fig. S2 A). In Colo357 and MiaPaCa-2 cells treated with gemcitabine, NF-κB phosphorylation was also increased (Fig. S2B and C). Importantly, IL-1α was overexpressed in a number of these human PDAC cells such as AsPc1 cells treated with gemcitabine, congruous with the NF-κB-regulated IL-1α feed-forward loop (Fig. 2B, upper) (6). We also observed an increase of ERK phosphorylation, which is inducible by IL-1 in AsPc1 cells treated with gemcitabine for 4 hours (Fig. 2B, lower). To determine whether rhIL-1RA can inhibit NF-κB activation to modulate gemcitabine chemoresistance, we treated AsPc1 PDAC cells with 10 μg/mL rhIL-1R antagonist in combination with 10 μM of gemcitabine. We found constitutive NF-κB activity inhibited by rhIL-1R antagonist, and the gemcitabine-induced NF-κB activation was substantially reduced in gemcitabine- and rhIL-1R antagonist-treated group (Fig. 2C). To determine whether a key IL-1R signaling node such as TAK1 is involved in gemcitabine-induced NF-κB activation, we examined activation status of TAK1 and ERK. The results showed that the activated or phosphorylated TAK1 was substantially reduced by rhIL-1R antagonist, and the gemcitabine-induced TAK1 activation was inhibited in rhIL-1R antagonist-treated AsPc1 cells (Fig. 2D). The expression of Tab1 did not significantly change with and without gemcitabine and rhIL-1RA (Fig. 2D, left). Furthermore, our results show ERK activation was inhibited by rhIL-1R antagonist, but gemcitabine-induced activation of ERK was not reduced in AsPc1 PDAC cells after treatment with rhIL-1R antagonist. The Colo357, MiaPaCa-2, and HPNE/KRAS^{G12V}/p16sh cell lines were treated with rhIL-1R antagonist (10 μg/mL) for 4 hours to confirm suppression of phosphorylated NF-κB (Fig. S1D-F). These results suggest that the inhibition of IL-1 receptor (IL-1R) by rhIL-1RA not only reduced IL-1α autocrine stimulation-induced NF-κB
activation, but also decreased gemcitabine-induced NF-κB activation.

Inhibition of the NF-κB-regulated IL-1α feed-forward loop increased chemosensitization of PDAC cells in vitro

To determine whether inhibition of NF-κB activation can sensitize gemcitabine-induced cell death, we examined the apoptotic response of PDAC cells treated with gemcitabine in the presence of and absence of rhIL-1R antagonist. AsPc1 cells were treated with rhIL-1R antagonist (10 μg/mL daily) and the viable cells, as measured by the MTT assay, were significantly decreased compared with that in the control group (Fig. 3A, left). In colony forming assay, the number of colonies that formed in AsPc1 cells also decreased with increasing doses of rhIL-1R antagonist over the 15-day treatment (Fig. 3B, left). However, a one-time treatment of rhIL-1R antagonist resulted in no change compared to the negative and positive control groups, according to the MTT and colony formation assays (Fig. S3A and B). Thus, daily treatment with rhIL-1R antagonist can enhance gemcitabine therapeutic effect (Fig. 3A, right).

The combination of gemcitabine and rhIL-1R antagonist also had a significant effect on colony formation in AsPc1 cells: there was a significant decrease in the number of colonies in the combination group (treated daily with rhIL-1R antagonist and treated once with gemcitabine) than in the gemcitabine group, (Fig. 3B, right). We used flow cytometry analysis to detect apoptosis after adjuvant chemotherapy with gemcitabine and rhIL-1R antagonist. A single treatment of rhIL-1R antagonist resulted in no change in AsPc1, MiaPaCa-2, or Colo 357 cell lines(Fig. 3C). Adjuvant chemotherapy with gemcitabine and rhIL-1R antagonist was more effective in MiaPaca2 and Colo357 cells. Miacapa2, (ration of Q2: rhIL-1RA, 1.667±0.120, % vs. Ctrl, 1.900±0.361, %, P=0.5725; gemcitabine, 6.333±0.504, % vs. Ctrl, 1.900±0.361, %, P=0.0020; rhIL-1RA&gemcitabine, 11.200±1.002, % vs.
gemcitabine, 6.333±0.504, %, \(P=0.0123 \), Fig. 3C). Colo357, (ration of Q2: rhIL-1RA, 4.533±0.2963, % vs. Ctrl, 2.200±0.231, %, \(P=0.0034 \); gemcitabine, 6.100±1.153, % vs. Ctrl, 2.200±0.231, %, \(P=0.0295 \); rhIL-1RA&gemcitabine, 12.870±2.130, % vs. gemcitabine, 6.100±1.153, %, \(P=0.0123 \), Fig. 3C). But not in AsPc1 cells. AsPc1, (ration of Q2: rhIL-1RA, 1.733±0.088, % vs. Ctrl, 1.600±0.289, %, \(P=0.6815 \); gemcitabine, 6.533±0.933, % vs. Ctrl, 1.600±0.289, %, \(P=0.0072 \); rhIL-1RA&gemcitabine, 7.667±0.555, % vs. gemcitabine, 6.533±0.933, %, \(P=0.3555 \), Fig. 3C). The apoptotic trend was more significant in AsPc1 tumor cells that had been treated with increasing doses of rhIL-1R antagonist and gemcitabine than it was in the control group (Fig. S3C).

To verify whether apoptosis was induced by gemcitabine in AsPc1 cells, expression levels of cleaved caspase-3, a component of the apoptotic pathway, were determined. The results show that cleaved caspase-3 was induced by gemcitabine in AsPc1 cells (Fig. S3D, left). When we downregulated the activity of the NF-κB using 10 μg/mL rhIL-1RA combined with 10 μM of gemcitabine, the expression levels of cleaved caspase-3 were increased in the AsPc1 cell line (Fig. S3D, right). To determine whether the combination treatment reduces cell invasion and migration \textit{in vitro}, we conducted Matrigel invasion and wound healing assays. A Matrigel invasion chamber test showed that increasing doses of rhIL-1R antagonist could inhibit AsPc1 cell invasion (Fig. 3D, upper), and increasing doses of rhIL-1R antagonist combined with 10 μM of gemcitabine resulted in more inhibition of AsPc1 cell invasion (Fig. 3D, lower). The wound healing test showed that AsPc1 cells had increasing difficulty merging after increasing doses of rhIL-1R antagonist; they were, ultimately, unable to merge completely (Fig. S3E). These results suggest that rhIL-1R antagonist-mediated inhibition of NF-κB activation suppressed invasion of PDAC cells.
Treatment of PDAC with anakinra alone or in combination with gemcitabine inhibited tumorigenesis in an orthotopic xenograft tumor model

To demonstrate whether inhibition of NF-κB activation by blocking the NF-κB-regulated IL-1α feed-forward loop increased the efficacy of chemotherapeutic agents in inhibiting PDAC cell growth in an orthotopic xenograft nude mouse model, twenty mice were orthotopically injected with AsPc1 human PDAC cells and randomly assigned to four groups (n=5 per group). Tumors in the control group were treated with PBS (100 μL/mouse) for 4 weeks and were significantly larger than those in the experimental groups. The orthotopic xenograft PDAC tumor was found in pancreatic tissue (Fig. S4A, yellow arrow), and the metastatic tumor in the liver tissue was close to pancreatic tissue (Fig. S4A, black arrow). There were no metastases on the gastric or splenic tissues (Fig. S4A, blue arrow, red arrow). The orthotopic xenograft tumor showed an absence of normal pancreatic cell morphological features on histological analysis (Fig. 5B, b, c and d). However, the mice treated with the combination of rhIL-1R antagonist and gemcitabine demonstrated a statistically significant reduction in tumor size compared to the control group (Fig. 4B and C). The mice treated with only gemcitabine had smaller tumors than did the control group, but there was no significant difference with rhIL-1R antagonist group (Fig. 4B and C). Thus, adjuvant chemotherapy with gemcitabine and rhIL-1R antagonist significantly inhibited tumor growth compared to that in the control group (Fig. 4B and C). Nude mice tumor weight (gram): Ctrl group: 1.12g, 1.84g, 1.22g, 0.87g, 0.57g; Gemcitabine group: 0.98g, 1.03g, 0.68g, 0.59g, 0.3g; rhIL-RA group: 1.08g, 1.14g, 0.69g, 0.60g, 1.02g; Gemcitabine & rhIL-RA group: 0.53g, 0.48g, 0.54g, 0.32g, 0.38g;

Immunohistochemical analyses were carried out to determine the expressions of Ki67, ERK, and NF-κB. The P65-activated subunit of NF-κB was downregulated after IL-1α-activated NF-κB was
blocked by rhIL-1R antagonist. The ERK pathway was also downregulated by rhIL-1R antagonist (Fig. 5A, C). A Western blot analysis showed that the expression of phosphorylated P65 in AsPc1 tumor tissue treated with gemcitabine was significantly higher than that in the control group (Fig. 5D). The expression level of phosphorylated P65 in AsPc1 tumor tissue treated with rhIL-1R antagonist and gemcitabine was significantly reduced compared with the control and gemcitabine groups (Fig. 5D). Thus, tumor growth was reduced with low expression of Ki67; a TUNEL assay revealed that apoptosis was increased (Fig. 5A). Taken together, these results show that adjuvant chemotherapy with gemcitabine and rhIL-1R antagonist significantly inhibited PDAC development in mouse model.

IL-1α in PDAC microenvironment is required for PDAC development in a genetically engineered mouse model

A genetically-engineered mouse model was utilized to determine the role of IL-1α in the microenvironment and the dependence of PDAC on IL-1α from the host and the tumor. IL-1α−/− mice (n=5), which were orthotopically injected with KRAS/p53^{−/−} tumor cells, had significantly lower tumor weights than did WT mice after 3 weeks (Fig. S5A). KRAS/P53^{−/−} cell line was established from PDAC found in pancreas of Pdx1-cre/KRAS^{LSL-G12D/p53^{LSL-R273H}} mice, and it is tumorigenic as shown in Figure 6A. After KRAS/p53^{−/−} mouse tumor cells (10x10⁵ cells/mouse) were injected into the pancreatic tissue of WT mice, the tumors grew more rapidly in comparison with those grown in IL-1α−/− mice (Fig. 6A). In the absence of IL-1α in the pancreas of the host, orthotopic xenograft KRAS/p53^{−/−} mouse tumors showed decreased expression of phosphorylated EGFR, phosphorylated ERK, cyclin D1, and Ki67, as determined via immunohistochemical analyses (Fig. 6B). A pathological analysis showed presence of typical morphological features of orthotopic PDAC (Fig. 6C). PDAC metastases were observed in liver.
tissues (Fig. S5B). In this preliminary experiment, paracrine IL-1α had more effect on tumor growth than did autocrine IL-1α; therefore, systematic adjuvant treatment with IL-1α receptor inhibitor should be the preferred treatment for blocking the NF-κB and IL-1α activities, thereby downregulating the activated subunit of NF-κB (Fig. 6D). Our study revealed a potential approach to inhibit NF-κB activation by targeting IL-1 receptor (IL-1R) as it serves as a mechanistic link to mutant KRAS and may be clinically useful for treating PDAC.

Discussion

Recent studies showed that knocking out of IKK2/β, the kinase required for NF-κB activation, suppressed PDAC development (6, 27, 28). We further demonstrated the mechanism through which KRAS^{G12D} induced constitutive NF-κB activation (6). Briefly, constitutive activation of NF-κB is dependent on KRAS^{G12D}/AP-1-induced IL-1α overexpression; which in turn, activates NFκB and its target genes IL-1α and p62, to initiate IL-1α/p62 feedforward loops for inducing and sustaining NFκB activity (6). This further enhances IL-1α/p62 expression, leading to inflammation and tumorigenesis. Thus, our findings suggest NF-κB is a missing mechanistic link between mutant KRAS, inflammation, and PDAC. Our findings also suggest IL-1 receptor (IL-1R) is a potential therapeutic target for PDAC patients.

To inhibit mutant RAS proteins directly with small-molecule inhibitors has been tried for more than 30 years (7). Thus far, it has proved unsuccessful. The new ideas are to find key signaling pathways that function downstream of RAS and inhibiting such signaling pathways may lead to PDAC suppression. To test this approach, we identified that IL-1α overexpression is an important mechanistic link between mutant KRAS and NF-κB activation and correlated with poor survival in PDAC patients (6, 29).
also affects the invasive potential of malignant cells and carcinogenesis. Since IL-1α is targeted by therapeutic FDA-approved IL-1R antagonist as drugs for other diseases, such as chronic inflammation autoimmune disorders, pharmacologically targeting IL-1α overexpression by blocking IL-1 receptor (IL-1R) may improve PDAC patient survival.

To further define the role of IL-1α overexpression in PDAC development, we first knocked out IL-1α in Pdx1-KRASLSL-G12D; p53M/+ mice and found that tumorigenesis is reduced in comparison to the control mice expressing IL-1α. The results suggest that overexpression of IL-1α plays an important role in PDAC development. To further determine the dependence of PDAC development on IL-1α from the host tumor environment, we injected IL-1α-null and wild-type mice with KRAS/p53m/+ tumor cells. IL-1α-null mice with the PDAC cells had significantly lower tumor weights than WT mice after 3 weeks (Fig. S4A). After KRAS/p53m/+ mouse tumor cells were injected into the pancreatic tissue of WT mice, the tumors grew more rapidly in comparison with those grown in IL-1α-/- mice (Fig. 6A). These results revealed that PDAC-induced IL-1α expression from the cells of the microenvironment promotes PDAC development. Taken together, these results suggest that pharmacologically targeting IL-1α overexpression by blocking IL-1 receptor (IL-1R) may inhibit PDAC development. The rationales for determining the role of stromal/host derived IL-1α in activation of NF-κB and other pathways are as follows: in the tumor micro-environment, IL-1 has local effects on host infiltrating lymphocyte, endothelial, and stromal cells via a paracrine mechanism that result in production of proangiogenic and prometastatic mediators. IL-1 stimulated tumor cells through autocrine and paracrine mechanisms, which in turn, activate other signaling pathways such as NF-κB. IL-1 receptor also functions as a mechanistic link between mutant KRAS and NF-κB pathway required for mutant KRAS-induced PDAC. Thus, IL-1 receptor is an important therapeutic target in a number of diseases and pathological
conditions including pancreatic cancer, rheumatoid arthritis, atherosclerosis, diabetes mellitus type I, inflammatory bowel disease and other autoimmune disorders [22, 30].

To determine a potential pharmacological approach to target IL-1α overexpression, we tested an inhibitor for IL-1 receptor, a human IL-1R antagonist (Anakinra). rhIL-1R antagonist is a potent receptor inhibitor, resulting in inhibition of NF-κB activity. Cell proliferation, migration, and invasion of PDAC cells treated with rhIL-1R antagonist and rhIL-1R antagonist with gemcitabine were reduced compared with the control cells. We found that anakinra, an FDA-approved drug for certain autoimmune diseases, inhibits IL-1 receptor, and when given with or without gemcitabine, can reduce tumor growth by inhibiting IL-1α-induced NF-κB activity; this result suggests that it is a potential useful therapeutic approach for PDAC.

In conclusion, Anakinra (rhIL-1R antagonist) is an FDA-approved drug that inhibits IL-1 receptor (IL-1R) and can be used to downregulate the activation of the NF-κB; combined with gemcitabine, rhIL-1R antagonist can significantly reduce tumor growth.

Disclosure of Potential Conflicts of Interest

The authors declare that there are no potential conflicts of interest.

Authors’ Contributions

Conception and design: Zhuonan Zhuang, Jianhua Ling, Min Li, Jiahong Dong, Paul J. Chiao

Method development: Zhuonan Zhuang, Jianhua Ling

Acquisition of data (e.g., provided animals and facilities): Zhuonan Zhuang, Huaiqiang Ju, Takashi Gocho, Tomonori Iida, Mitzi Aguilar, Hao Li
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, and computational analysis): Zhuonan Zhuang, Xiaoqiang Fan, Haijun Zhou, Tomonori Iida, Zhongkui Li, Jie Fu

Writing, review, or revision of the manuscript: Zhuonan Zhuang, Mitzi Aguilar, Kesen Xu, Paul J. Chiao, Min Wu

Administrative, technical, or material support (i.e., reporting or organizing data and constructing databases): Zhuonan Zhuang, Mitzi Aguilar, Jianhua Ling, Harold Lee, Davide Melisi, Yoichiro Iwakura D. Sc., Jason B. Fleming

Acknowledgements

The authors thank Dr. Hung’s laboratory for providing technical imagining equipment, the histology department of MD Anderson for histological examinations, Sutton, Ann M in scientific publications department of MD Anderson for editorial assistant and Yu Cao for technical support.

Grant Support

This research was supported in part by grants from the National Cancer Institute (CA 097109, and CA 109405, to P.J. Chiao), and from Viraph Foundation (P.J. Chiao), and a Cancer Center Support grant to MD Anderson, CA16672).
References

Figure Legends

Figure 1. Blocking the NF-κB-regulated IL-1α feed-forward loop with rhIL-1RA decreased NF-κB and ERK pathway expression levels in vitro.

A, Western blot analysis to determine the expression levels of phosphorylated P65 and P65 in different human PDAC proteins (right); the length of the bar indicates that there was high expression of phosphorylated P65 in human PDAC proteins (left). B, Western blot analysis to determine the
expression of phosphorylated P65 and P65 in total cell lysates of the AsPc1 cell line, treated with rhIL-1RA (left). Expressions of phosphorylated P65 and P65 in the nuclear extract in an AsPc1 cell line, as assayed by Western blot analysis (right). C, Western blot analysis showed the changes of P65 expression of AsPc1 cell line treated with IL-1α and rhIL-1R antagonist (left). P65 expression increased after stimulation with 10 ng/mL IL-1 factor. After treatment for 4 h, the expression of phosphorylated P65 decreased at doses of 10 and 20 μg/mL (right). D, Western blot analysis showed the changes of phosphorylated ERK expression of AsPc1 cell line treated with rhIL-1R antagonist (left). The expression of phosphorylated ERK decreased with increasing doses of rhIL-1RA (right).

Figure 2. NF-κB and ERK pathway changes *in vitro* after treatment with gemcitabine

A, Western blot analysis to determine the expression of phosphorylated P65 and P65 in total cell lysates of AsPc1 cells after treatment with gemcitabine (left); Western blot analysis to determine the expression of phosphorylated P65 and P65 in nuclear extracts in the AsPc1 cell line (right). B, Western blot analysis showed the changes of IL-1α expression in AsPc1 treated with gemcitabine (upper left). The bar table showed IL-1α expression increased after the activated NF-κB was treated with gemcitabine (upper right); Western blot analysis showed phosphorylated ERK and ERK expressions in AsPc1 cells treated with gemcitabine (lower left) The bar table show gemcitabine increased phosphorylated ERK and ERK expressions in AsPc1 cells (lower right). C, Western blot analysis showed the changes of expression of NF-κB in AsPc1 cells (left). The bar table showed rhIL-1R antagonist decreased the expression of NF-κB in AsPc1 cells treated with gemcitabine combined with rhIL-1R antagonist (right). D, NF-κB pathway and the cell cycle effect, as assayed by Western blot analysis in ASPC1 cells treated with gemcitabine and rhIL-1RA (left); expression of ERK, as assayed by Western blot analysis, in AsPc1
cells treated with gemcitabine combined with rhIL-1RA (right).

Figure 3. Apoptosis of AsPc1 cells after blocking the NF-κB-regulated IL-1α feed-forward loop and treatment with gemcitabine *in vitro*. A, Cell growth was assessed by the MTT assay. The growth of AsPc1 cells treated with rhIL-1RA daily was significant slowly compared with control group (left, \(*P=0.002 \)); gemcitabine combined with rhIL-1RA decreased AsPc1 cell proliferation significantly (right). Gemcitabine and rhIL-1RA vs. control, \(**P=0.013 \). B, Cell proliferation was assessed by the colony formation test. Error bar shows that cell colony formation slowed in AsPc1 cells after treatment with rhIL-1RA daily compared with in the control (\(P=0.001 \), left). Gemcitabine and rhIL-1RA influenced colony formation more significantly than did gemcitabine alone (\(P<0.001 \), right). C, Flow cytometry analysis of the Annexin V staining assay. The ratio of Q2+Q4 in the AsPc1 cell line (Ctrl: 2.1%; rhIL-1RA: 1.9%; gemcitabine: 8%; gem+rhIL-1RA: 8.7%); the ratio of Q2+Q4 in the MiaPaca2 cell line (Ctrl: 2.4%; rhIL-1RA: 1.9%; gemcitabine: 14.2%; Gem+rhIL-1RA: 16%); and the ratio of Q2+Q4 in the Colo357 cell line (Ctrl: 2.6%; rhIL-1RA: 5.1%; gemcitabine: 5.6%; Gem+rhIL-1RA: 9.3%). rhIL-1RA can be combined with gemcitabine to increase PDAC cell apoptosis. D, Assay of the Matrigel invasion chamber test showed reduced migration and invasion of AsPc1 cells treated with IL-1α and rhIL-1RA (upper). Assay of the Matrigel invasion chamber test showed reduced migration and invasion of AsPc1 cells treated with gemcitabine and rhIL-1RA (lower).

Figure 4. Inactivation of the NF-κB-regulated IL-1α feed-forward loop and treatment with gemcitabine decreased tumorigenesis in AsPc1 cells in the orthotopic mouse model. A, Tumor progression timeline with experimental treatment time points. Nude mice were treated with 25
mg/kg gemcitabine twice per week and/or with 1.5 mg/kg rhIL-1RA daily in total 4-week treatment. B, A digital gray-scale image of each mouse was acquired, which was followed by the acquisition and overlay of a pseudo-color image that represented the spatial distribution of detected photons emerging from active luciferase in the nude mice at 1 day, 14 day, and 28 day after treatment. C, Error bar shows that the bioluminescence imaging value of in vivo tumor growth was significantly lower in mice treated with gemcitabine and rhIL-1RA than in the control and gemcitabine groups ($P=0.002$; $P=0.019$). D, There was no significant weight loss in 20 athymic mice.

Figure 5. Expression of cell proliferation-associated genes and inactivation of the NF-κB-regulated IL-1α feed-forward loop.

A, Immunohistochemical analysis of serial paraffin-embedded sections from AsPc1 tumors and normal pancreatic tissues, treated as indicated, were stained with antibodies to Ki67, ERK phosphorylation, and the active P65 subunit of NF-κB. A TUNEL apoptosis analysis was performed by staining AsPc1 tumors and normal pancreatic tissues. B, Representative micrographs show the histopathologic features by H&E staining. C, The error bars showed that Ki 67, phosphorylated Erk and phosphorylated P65 expressions in the group treated with gemcitabine and rhIL-1RA was significantly down-regulated compared with that in the control and gemcitabine groups. The error bar shows more apoptotic cells in AsPc1 tumor tissue treated with gemcitabine and rhIL-1RA, as detected by the TUNEL assay, than in the control and gemcitabine groups ($P<0.001$; $P=0.001$). D, Western blot analysis showed the expression of phosphorylated P65 and P65 in a total cell lysate of AsPc1 tumor tissue in each mouse (left). Error bars showed that phosphorylated P65 expression in the group treated with gemcitabine and rhIL-1RA was significantly down-regulated compared with that in the control and gemcitabine groups ($P=0.044$;
Figure 6.

A, KRAS/p53⁺ tumors were divided from the pancreatic tissue of genetically engineered mice (n=5 per group) that had been euthanized by carbon dioxide inhalation after being injected with tumor cells after 3 weeks (left). The tumor weights tested in each group showed that tumor growth was delayed in IL-1^{α−/−} mice compared with WT mice (P=0.022, right). B, Immunohistochemical analysis of serial paraffin-embedded sections from KRAS/p53⁺ tumors and normal pancreatic tissues that had been stained with antibodies to EGFR phosphorylation, ERK phosphorylation, cyclin D1, and Ki67. C, H&E staining observed under micrographs showed the histopathologic features of normal pancreatic tissue, tumor tissue, and the tumor margin. D, Microenvironmental IL-1α is required for tumor growth. Treatment with rhIL-1RA and gemcitabine decreased tumor growth by down-regulating the NF-κB-regulated IL-1α feed-forward loop and the ERK pathway in PDAC.
Figure 1

A

B

AsPc1

- 5 10 20
rhIL-1RA(μg/mL)

P-P65
T-P65
β-actin

C

AsPc1

- + + + +
rhIL-1RA(μg/mL)

IL-1α

P-P65
T-P65
β-actin

D

AsPc1

- 5 10 20
rhIL-1RA(μg/mL)

P-Erk
T-Erk
β-actin
Figure 2

A

AsPc1

Gem(μM)
P-P65

T-P65

β-actin

B

AsPc1

IL-1α/β-actin

P=0.0052

P-Erk

C

AsPc1

Gem(μM)
rhIL-1RA(μg/mL)

AsPc1

Gem(μM)
rhIL-1RA(μg/mL)

P-P65

T-P65

β-actin

D

AsPc1

Gem(μM)
rhIL-1RA(μg/mL)

P-Tak 1

Tak 1

Tab 1

β-actin
Clinical Cancer Research

IL-1 Receptor Antagonist Inhibits Pancreatic Cancer Growth by Abrogating NF-κB Activation

Clin Cancer Res Published OnlineFirst October 23, 2015.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-3382

Supplementary Material Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/10/23/1078-0432.CCR-14-3382.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.