Cabozantinib (XL184) Inhibits Growth and Invasion of Preclinical TNBC Models

Mansoureh Sameni¹, Elizabeth A. Tovar², Curt J. Essenbury², Anita Chalasani¹, Erik S. Linklater², Andrew Borgman³, David M. Cherba³, Arulselvi Anbalagan¹, Mary E. Winn³, Carrie R. Graveel², and Bonnie F. Sloane¹,⁴

Abstract

Purpose: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is associated with poor clinical outcome. There is a need for effective targeted therapeutics for TNBC patients, yet treatment strategies are challenged by the significant intertumoral heterogeneity within the TNBC subtype and its surrounding microenvironment. Receptor tyrosine kinases (RTK) are highly expressed in several TNBC subtypes and are promising therapeutic targets. In this study, we targeted the MET receptor, which is highly expressed across several TNBC subtypes.

Experimental Design: Using the small-molecule inhibitor cabozantinib (XL184), we examined the efficacy of MET inhibition in preclinical models that recapitulate human TNBC and its microenvironment. To analyze the dynamic interactions between TNBC cells and fibroblasts over time, we utilized a 3D model referred to as MAME (Mammary Architecture and Microenvironment Engineering) with quantitative image analysis. To investigate cabozantinib inhibition in vivo, we used a novel xenograft model that expresses human HGF and supports paracrine MET signaling.

Results: XL184 treatment of MAME cultures of MDA-MB-231 and HCC70 cells (± HGF-expressing fibroblasts) was cytotoxic and significantly reduced multicellular invasive outgrowths, even in cultures with HGF-expressing fibroblasts. Treatment with XL184 had no significant effects on MET expression levels in MDA-MB-231 and MCF7 cells.

Conclusions: Using preclinical TNBC models that recapitulate the breast tumor microenvironment, we demonstrate that cabozantinib inhibition is an effective therapeutic strategy in several TNBC subtypes.
Translational Relevance

There is a critical need for effective targeted therapies for triple-negative breast cancer (TNBC) patients. The evaluation of treatment strategies is challenged by the intertumoral heterogeneity within TNBC and its surrounding tumor microenvironment (TME). The receptor tyrosine kinase MET is highly expressed in several TNBC subtypes and is a promising therapeutic target. In this study, we utilized unique in vitro and in vivo preclinical models that recapitulate the breast cancer TME and paracrine signaling factors. Using the inhibitor cabozantinib (XL184), we evaluated the efficacy of MET inhibition on 3D TNBC growth and invasion over time. We observed that cabozantinib significantly inhibited TNBC growth and invasion of diverse TNBC cell lines, yet was ineffective against METneg TNBC cells. In vivo, cabozantinib blocked TNBC tumor growth and metastasis in HGFSCID-SCID mice. These results demonstrate that cabozantinib inhibition may be a highly effective treatment strategy for TNBC patients.

The RTK MET drives several oncogenic processes, including invasion, proliferation, and survival, and is involved in the progression and metastasis of most solid human cancers (11). In breast cancer, MET is overexpressed in 20% to 30% of cases and is a strong, independent predictor of poor clinical outcome (12–16). We previously demonstrated that MET is expressed in all molecular subtypes of breast cancer, but we observe the highest expression in basal-like (TNBC) breast cancers (17, 18). These findings have been supported by several other studies on MET in basal-like breast cancers [for review, see (19, 20)]. Recently, we demonstrated that MET is coexpressed in the majority of HER2+ breast cancers and may be involved in therapeutic resistance to HER2-targeted therapies (21). These findings demonstrate that MET overexpression commonly occurs in the more aggressive breast cancer subtypes (i.e., TNBC) and may be a novel therapeutic target. In cancer, aberrant MET signaling can occur through overexpression of MET or HGF, amplification, mutation, or autocrine signaling. MET signaling is also frequently elevated in tumors due to increased secretion of HGF by cancer-associated fibroblasts (CAF). The exact mechanism by which MET signaling is dysregulated in TNBC has not been elucidated.

The TME is composed of a complex network of stromal cells, immune cells, extracellular matrix, and cytokines/chemokines that is also influenced by pH and hypoxia. The paracrine interactions between the tumor epithelium and TME have been shown to be critical for the invasive, metastatic, and resistant tumor phenotypes. A recent study found that cocultures with CAFs induce HGF signaling in basal-like, but not luminal-like breast cancer cells (22). We have shown that mammary fibroblasts engineered to secrete high levels of HGF (ME:HGF) enhance proteolysis and invasiveness of a preinvasive TNBC cell line (MCF10.DCIS) in 3D cocultures and progression to invasive carcinomas in vitro (8). These studies underscore the influence of the TME on RTK signaling and breast cancer progression.

In this study, we examined the efficacy of MET inhibition on TNBC progression in vitro and in vivo. We utilized the small-molecule inhibitor cabozantinib (XL184), which potently inhibits MET and VEGFR2 (23). Clinical activity with cabozantinib has been demonstrated in a range of cancers. A striking clinical result of cabozantinib is the significant decrease in bone metastases seen on bone scans in castrate-resistant prostate cancer patients (24, 25). Cabozantinib is being tested in a phase II clinical trial for metastatic TNBC and phase III clinical trials for metastatic renal carcinoma and hepatocellular carcinoma and has been FDA approved for treatment of metastatic medullary thyroid cancer. To analyze the temporal and dynamic interactions between the epithelial tumor cells and CAFs, we employed a 3D model referred to as MAME (Mammary Architecture and Microenvironment Engineering) and quantitative image analysis. We have previously shown that MAME cocultures are able to recaputulate tumor-TME interactions, the invasive phenotype that occurs in vivo, and model the ability of antagonists to reduce invasion (8, 26, 27; Sameni and Sloane, unpublished). For investigation of MET inhibition in vivo, we utilized a novel xenograft model that expresses human HGF on an immunocompromised SCID background. Because mouse IGF binds human MET with low affinity (28), traditional immunocompromised mouse models do not effectively activate human MET signaling. The HGFSCID model enhances the growth of MET-dependent human tumors, defines the HGF contribution to tumor growth, and is a valuable model for preclinical testing of inhibitors targeting the MET signaling pathway (29, 30). Using these unique strategies, we are able to interrogate the efficacy of MET inhibition in environments in which both autocrine and paracrine signaling may be driving tumor progression.

Here, we observed that cabozantinib (XL184) inhibits growth and invasion of TNBC cells in both monocultures and cocultures with HGF-overexpressing fibroblasts or CAFs. This efficacy was observed for TNBC cell lines representing various TNBC molecular subtypes. Even though cabozantinib inhibits kinase activity of MET and VEGFR2, cabozantinib was ineffective against METneg TNBC cells. These findings imply that MET signaling is a crucial signaling node in TNBC growth and invasion. Additional in vivo studies demonstrated that cabozantinib treatment was highly effective in inhibiting TNBC progression and metastasis. In summary, these results reveal that cabozantinib inhibition may be a highly effective treatment strategy for TNBC patients.

Materials and Methods

Antibodies and reagents

Cabozantinib (XL184) was kindly provided by Exelixis. Reconstituted basement membrane (rBM; Cultrex) was purchased from Trevigen. Alexa Fluor 546 phalloidin, DAPI, Slow Fade Reagent, FITC-conjugated affinity-purified donkey anti-rabbit IgG and normal donkey serum, Click-it®EDU assay, Live/Dead Viability/Cytotoxicity Kits and Leibovitz L15 medium were from Life Technologies. Ki67 antibody was from Abcam. Cignal Lenti-RFP was purchased from Qiagen and Lenti-YFP from Lentigen. Protease/phosphatase inhibitor cocktail (#5872) was purchased from Cell Signaling Technology. Mammary epithelial basal medium (MEBM) without phenol red and MEGM was purchased from Lonza. Fetal bovine serum (FBS) was from HyClone. Bovine serum albumin, antibiotics, Triton X-100 and all other chemicals, unless otherwise stated, were purchased from Sigma. See Immunoblot Analysis and Experimental Lung Metastasis for additional antibodies.
Cell lines

All cell lines were cultured in basal medium supplemented with 10% fetal calf serum (MDA-MB-231, DMEM; MDA-MB-468, Liebovitz L-15 media; HCC70, DMEM; and HS578T, DMEM + 10 μg/ml bovine insulin). Cells were originally purchased from American Type Culture Collection (ATCC). The WS12Ti fibroblasts are a human breast carcinoma associated fibroblast cell line that was isolated at Karmanos Cancer Institute (31, 32). MF:HGF is a normal human breast fibroblast line that has been engineered to express GFP and secrete high levels of HGF (a kind gift of Dr. Kuperwasser, Tufts University Boston, MA; ref. 33). MDA-MB-231 and HCC70 were transduced with Cignal Lent-RFP and WS12Ti with Lenti-YFP in order to distinguish among the cell types in 3D cocultures. Cell lines were authenticated using the STR PowerPlex 16 system (Promega).

MAME cultures of TNBC cells ± MF:HGF or CAFs

MDA-MB-231 and HCC70 cells were grown as monocultures or in cocultures with CAF or MF:HGF cells. Details for establishing and analyzing MAME cultures are described in detail in Results and Supplementary Data (34).

Immunofluorescent staining

HCC70 and MDA-MB-231 cells were grown on glass coverslips to 40% to 50% confluency in triplicate. Media were changed to serum-free MEGM 24 hours prior to treatment. Cells were treated with DMSO or 2 μmol/L XL184 or vehicle (DMSO) for 25 minutes at 37°C. Then 100 ng/ml HGF (R&D Systems) was added to the cells in the presence or absence of XL184 and incubated at 37°C for 5 minutes. Cells were fixed with 4% formaldehyde in PBS for 15 minutes at room temperature (RT), followed by washing in PBS, and then incubated in blocking buffer (5% normal donkey serum/0.3% Triton X-100 in PBS) for 1 hour at RT. The cells were incubated with primary antibody, phospho-Met (Tyr1234/1235) (D26) XP Rabbit mAb (Cell Signaling Technology, 1:50), overnight at 4°C, and then incubated with Alexa Fluor 488-conjugated secondary antibody (Life Technologies) to enable fluorescent detection for 2 hours at RT. Nuclei were labeled with DAPI and cells were mounted with Slowfade gold antifade reagent (Invitrogen). Images were visualized on a Zeiss LSM 780 confocal microscope.

Immunoblot analysis

Whole-cell lysates were collected in a RIPA buffer containing protease/phosphatase inhibitor cocktail (Cell Signaling Technology). HCC70, MDA-MB-231, MDA-MB-468, HS578T, CAFs, and MF:HGF were grown for 6 days, treated with 2 μmol/L of XL184 for 30 minutes, washed with PBS containing protease/phosphatase inhibitor cocktail and harvested in RIPA buffer plus inhibitor cocktail. For blots shown in Supplementary Figs. S1 and S2, cells were treated with HGF and/or XL184 for 24 hours. For 3D cultures, the cells were grown for 6 days in RIPA-treated dishes, treated as above, washed with sterile PBS containing protease/phosphatase inhibitor cocktail, scraped in cold PBS 5 mmol/L EDTA plus inhibitor cocktail, placed on ice, washed 2 times for 1 hour each to remove RIPA, and then RIPA buffer containing inhibitor cocktail was added to the cell pellets. Lysates were loaded based on DNA concentrations.

Lysates (20–40 μg) were resolved on a 4% to 20% TGX SDS-PAGE gel (Bio-Rad) and transferred to a PVDF membrane (Invitrogen). After blocking for 1 hour with 5% dry milk in TBST buffer (20 mmol/L Tris-HCl pH 7.4, 150 mmol/L NaCl, 0.1% Tween-20), blots were probed overnight at 4°C with the following primary antibodies from Cell Signaling Technology: Met (DC12), pMET (Y1234/Y1235; D26), AKT (#9272), pAKT (#473; #9271), MAPK (#9102), pMAPK (Thr202/Tyr204; #9101), and β-tubulin (#2146). Blots were reacted with peroxidase-conjugated antibody for 1 hour, followed by visualization of the proteins using ECL detection reagents (Amersham).

Live/Dead viability/cytotoxicity assay

MDA-MB-231 alone or together with MF:HGF or WS12Ti cells were seeded on rBM with 2% rBM overlay. Vehicle control or 2 μmol/L XL184 were added at day 0 and replaced every other day. At day 6 or 12, the Live/Dead assay was performed as previously described (35).

In vivo efficacy studies

All animal studies were conducted with protocols approved by the Institutional Animal Care and Use Committee of the Van Andel Research Institute. The breeding and genotyping of the hHGFSCID mice has been previously described (29). Female mice ages 4 to 8 weeks were used for the tumor growth kinetic experiments. Age-matched C3H-SCID littermates from the same mating cages as the hHGFSCID mice were used as experimental controls. For orthotopic tumor formation, subconfluent cells were harvested and resuspended in serum-free DMEM or RPMI at concentrations of 1 × 10⁶ cells/mL. Each animal received 100 μL of cell suspension injected s.c. into the mammary fat pad. Tumor-bearing mice for each mouse strain (either hHGFSCID or C3H-SCID) were randomized into two groups (10 mice/group) for treatment with vehicle or XL184 (30 mg/kg, once daily). Following cell injection, mice were monitored for tumor formation twice weekly and tumor volume was measured with manual calipers. Treatment started when the average tumor size reached 150 mm³ and drugs were administered for 21 days. For the established tumor study, only hHGFSCID animals were used and treatment started when the average tumor size reached 500 mm³. Linear mixed-effects models were used to test for significant differences in drug response across treatment arms: the Xenocat modeling framework (36) was leveraged to increase statistical power for poorly growing xenograft.

Experimental lung metastasis assay

For lung metastasis formation, 5.0 × 10⁵ MDA-MB-231 cells were washed and harvested in HBSS and subsequently injected into the lateral tail vein in a volume of 0.2 mL. Mice were treated with vehicle or XL184 (30 mg/kg, once daily) starting the following day. Endpoint assays were conducted at 14 days after injection unless significant morbidity required that the mouse be euthanized earlier. Pulmonary metastases were identified both by perfusing with 15% India ink solution and bleaching the collected lungs in Fekete’s solution. For quantitation, fixed sections were cut every 200 μm and immunostained for human MHC Class I alpha antibody (EP1395V; Abcam). Stained sections were scanned on the Aperio XT ScanScope and lung metastases were quantitated using multispectral image analysis. Positive pixel percentage was determined by quantitating the percentage of pixels positive for human MHC Class I alpha staining per total tissue area in each section.
Results
Effect of XL184 on MET signaling in TNBC and fibroblast cells
To understand how XL184 treatment affects MET signaling, we first examined MET expression and activity in multiple TNBC cell lines that are representative of several TNBC subtypes identified by Lehmann and colleagues (3). These cell lines correspond to the two major basal-like subtypes and a mesenchymal-like subtype that were identified by the Pietenpol laboratory. This included Hs578t (mesenchymal stem-like; basal B), MDA-MB-231 (mesenchymal stem-like; basal B), MDA-MB-468 (basal-like 1; basal A), and HCC-70 (basal-like 2, basal A) cells. We observed high MET expression in Hs578t and HCC-70 cells, moderate expression in MDA-MB-231 cells, and low expression in MDA-MB-468 cells (Fig. 1A). In 2D cultures, we observed MET phosphorylation (pMET) in HCC70 cells, which expressed the highest levels of MET. MET activation was inhibited with XL184 treatment.

Figure 1.
XL184 has distinct effects on MET, AKT, and MAPK signaling in human TNBC cells and breast fibroblasts. Immunoblot analysis was used to evaluate the effect of XL184 treatment on 2D and 3D monocultures of TNBC cells and fibroblasts. A, analysis of monocultures revealed that MET is highly expressed but not constitutively active in diverse TNBC cell lines, not expressed in MF:HGF cells, and weakly expressed in Ws12Ti CAFs. B, confocal immunofluorescence analysis of pMET (Y1234/Y1235) in HCC70 cells that were untreated (DMSO), XL184-treated (2 μmol/L), HGF-treated (100 ng/mL), and XL184 + HGF treated. Blue pseudocolor, DAPI nuclear stain. Scale, 20 μm. C, AKT and MAPK signaling was differentially effected by XL184 treatment in TNBC cell lines and fibroblasts. D, MEK inhibition with 10 μmol/L U0126 had no effect on MET expression or activation in TNBC monocultures (E), but resulted in increased AKT phosphorylation and loss of MAPK activity. F, inhibition of MET in 3D monocultures caused similar changes in MAPK activity as compared with what was observed in 2D monocultures. β-Tubulin was used as a loading control.
Figure 2. XL184 reduces TNBC structures. A, experimental time course started with seeding TNBC cells in 3D rBM overlay cultures with or without fibroblasts. Vehicle control or XL184 was added at day 4, replaced every 2 days, and structures were imaged on day 10. B, XL184 significantly reduced the volume of MDA-MB-231 structures at 2 to 6 μmol/L. C, XL184 treatment significantly reduced the volume of both MDA-MB-231 monocultures and cocultures with MF:HGF cells. (Continued on the following page.)

XL184 Inhibition Is Effective against TNBC
(Continued) D, representative 3D reconstructions illustrate volume and number of MDA-MB-231 (red) structures in both monocultures and cocultures with MF:HGF cells (green). E, XL184 significantly reduced the volume of HCC70 structures at 2 to 6 μmol/L. F, XL184 treatment significantly reduced the volume of both HCC70 monocultures and cocultures with MF:HGF cells. G, representative 3D reconstructions illustrate volume and number of HCC70 (red) structures in both monocultures and cocultures with MF:HGF cells (green). Volumes were quantified in 64 fields (16 contiguous fields/experiment) from four independent experiments (one grid unit, 180 μm) and P values were calculated by Student t test (*, P < 0.05; **, P < 0.01; ***, P < 0.001).
XL184 has no effect on invasion or volume of MET^{neg} TNBC cells.

XL184 is known to have activity against MET and VEGFR2. To verify that the efficacy of XL184 on TNBC growth is mediated through the MET pathway, we examined the effect of XL184 on both MET^{pos} (MDA-MB-231 and HCC70) and MET^{neg} (T47D) cell lines in coculture with MF:HGF cells. T47D is a luminal breast cancer cell line that is commonly used as a negative control for MET expression. XL184 treatment reduced invasive outgrowths and significantly decreased the volume of structures formed by MET^{pos} MDA-MB-231 and HCC70 cells in coculture with fibroblasts exhibiting a significant reduction in volume with XL184 treatment, whereas those formed by MET^{neg} T47D cells in coculture with fibroblasts were not significantly reduced in volume (P > 0.4) with XL184 treatment. Effects of XL184 treatment were quantified in 64 fields as described in Fig. 2 legend. Data are shown as the mean ± SD of three independent experiments and the Student t test was used to evaluate significance (**, P < 0.01).

Figure 3.

XL184 has no effect on invasion or volume of MET^{neg} TNBC cells. Cocultures were treated with 2 μmol/L XL184 and imaged and analyzed as described in Fig. 2. A, XL184 treatment reduces invasive phenotype of MET^{pos} MDA-MB-231 and HCC70 cell: fibroblast structures, but not MET^{neg} T47D cell: fibroblast structures as illustrated by representative en face views of 3D reconstructions. B, structures formed by MET^{pos} MDA-MB-231 and HCC70 cells in coculture with fibroblasts exhibited a significant reduction in volume with XL184 treatment, whereas those formed by MET^{neg} T47D cells in coculture with fibroblasts were not significantly reduced in volume (P > 0.4) with XL184 treatment. Effects of XL184 treatment were quantified in 64 fields as described in Fig. 2 legend. Data are shown as the mean ± SD of three independent experiments and the Student t test was used to evaluate significance (**, P < 0.01).

XL184 treatment reduces multicellular invasive outgrowths from TNBC structures

As noted above, XL184 treatment appears to reduce the invasive phenotype of structures formed by MET^{pos} TNBC and HGF-overexpressing fibroblasts (see Fig. 3A). To further analyze possible effects of XL184 on the invasive phenotype, we used Volocity software to segment the 3D structures into cores (pseudocolored purple) and invasive outgrowths (pseudocolored green; Fig. 4A). A dramatic change in invasive outgrowths is illustrated by the reduced green fluorescence in structures treated with XL184 (Fig. 4B). Quantification of the volume of the structure cores and multicellular invasive outgrowths revealed that XL184 significantly reduced the volume of both cores and invasive outgrowths of MDA-MB-231 structures (Fig. 4C). XL184 also significantly reduced the volume of invasive outgrowths formed by MDA-MB-231 cells in coculture with MF:HGF cells, yet a significant decrease in core volume with XL184 treatment was not observed (Fig. 4D). These results suggest that HGF-expressing cells within...
the tumor microenvironment may reduce the efficacy of MET inhibitors against TNBC proliferation.

XL184 treatment is cytotoxic to TNBC monocultures and cocultures with fibroblasts

To further understand the effect of cabozantinib on TNBC proliferation, we examined the effect of XL184 on live cells in TNBC monocultures or cocultures with fibroblasts. We observed that XL184 treatment reduced the number of live 3D structures (Fig. 5A) and volume of live structures (Fig. 5B) formed by MDA-MB-231 cells in monoculture and coculture with Ws12Ti cells (Fig. 5). A similar effect was observed in cocultures with MF:HGF cells (data not shown). Because tumor recovery after drug removal is a concerning clinical issue, we evaluated the persistence of XL184 treatment on growth suppression. In this experiment, cells were treated for 6 days with XL184 and then the drug was removed for 6 days before imaging (Supplementary Fig. S4). When treatment with XL184 was stopped, some recovery in growth was observed, consistent with XL184 inducing cytostasis in a subpopulation of the cells (40). XL184 does suppress proliferation as evidenced by a decrease in cells staining for the proliferation marker Ki67 in structures formed by MDA-MB-231 cells alone or in coculture with either CAFs or MF:HGF cells (data not shown).

XL184 is highly effective against TNBC tumor growth in vivo

To examine the efficacy of inhibiting MET in vivo, we injected MDA-MB-231 and HCC70 cells into the mammary fat pads of hHGFtg-SCID and C3H-SCID animals. Because the hHGFtg-SCID mice express human HGF, they are able to mimic the high HGF-expressing microenvironment of most cancers. When the tumors reached 150 mm³, animals were treated with XL184 for 3 weeks. Both cell lines showed enhanced growth rates in the hHGFtg-SCID mice (Fig. 6A) as compared with the C3H-SCID control mice (Supplementary Fig. S5A and S5B). MET inhibition with XL184 resulted in a significant decrease in tumor growth as compared with the vehicle (P < 0.001) for both MDA-MB-231 and HCC70 xenografts. Evaluation of MET activation in vehicle and XL184-treated tumors showed that MET is highly active in vehicle-treated tumors (Fig. 6B and D), whereas MET activity is only present in a thin layer of cells at the periphery in XL184-treated tumors (Fig. 6C and E). XL184 treatment caused significant necrosis in the majority of the tumor whereas the cells on the tumor periphery are proliferating (data not shown). These pMET positive cells at the tumor edge are surrounded by viable mammary fat pad and exposed to XL184 therefore it is likely that these cells represent a MET-positive resistant subpopulation. To examine the efficacy of XL184 against established TNBC growth, we started treatment after the MDA-MB-231 tumors were approximately 500 mm³.
Cabozantinib Inhibition Is Effective against TNBC

Discussion

TNBC comprises 15% to 20% of all breast cancers yet accounts for a disproportionate percentage of breast cancer deaths. This depressing statistic is largely attributable to the aggressive nature of the disease, its high molecular heterogeneity, and the lack of targeted therapies for TNBC (1, 2). Because TNBC often recurs within 3 to 5 years of diagnosis, there is a short timeframe in which to achieve a complete response in TNBC patients (2). The high expression of RTKs and growth factors across several TNBC subtypes makes targeting RTK signaling a promising therapeutic option for TNBC patients (3). In this study, we targeted the MET oncogene as it is a RTK that is highly expressed across several TNBC subtypes and numerous MET inhibitors are currently being tested in clinical trials.

The tumor microenvironment is a substantial component of a tumor that can significantly influence both breast cancer progression and treatment efficacy (41, 42). Nonetheless, the human breast cancer TME is often excluded in preclinical testing of targeted therapies. In this study, we used distinct in vitro and in vivo models that recapitulate the TNBC epithelium and TME. Our 3D MAME cocultures are able to model both progression to an invasive phenotype and the ability of antagonists to reduce that invasive phenotype. By employing MAME cultures of TNBC cell lines that represent different TNBC molecular subtypes in coculture with mammary fibroblasts and CAFs, we were able to test the efficacy of XL184 inhibition in a model that recapitulates the diverse tumor epithelium–stromal interactions of TNBC. This allowed us to evaluate the efficacy of cabozantinib against paracrine MET signaling as both the mammary fibroblasts and CAFs expressed high levels of HGF. We found that cabozantinib reduced the volume of 3D structures including their invasive outgrowths even in the presence of HGF-expressing CAFs.

The exploration of paracrine MET signaling was continued by in vivo analysis of MET inhibition through the use of the hHGI8-SCID model. Here we observed that METpos TNBC cells are significantly inhibited with cabozantinib. To model the treatment of established human tumors, we delayed XL184 dosing until the tumors had reached 500 mm3 (compared with 100 to 150 mm3 in typical in vivo studies). Even though we observed a significant decrease in tumor growth, there is a clear upward growth trend that begins after the first week of treatment (Fig. 6F). This suggests that there may be therapeutic resistance to targeted MET inhibition in established or late-stage tumors. Resistance to TKI monotherapy is often observed in late-stage cancers. To avoid this therapeutic resistance it will be necessary to identify combination therapies that will target signaling nodes that are essential to tumor survival. One possibility is combination therapy of MET and MEK inhibitors. An increase in MAPK activity was observed in two TNBC cell lines after XL184 treatment (Fig. 1) and previously we observed increased MAPK activity in METpos cells treated with MET shRNA in HER2+ breast cancers (21). MAPK activity may be increased in response to MET inhibition through several mechanisms, including activation of other RTKs (6, 7). Further studies are necessary to determine which receptors may be compensating for MET inhibition and if targeting MET and MEK in combination in TNBC is more effective.

Our findings and other studies suggest that MET inhibitors are most effective against high MET-expressing tumors (43, 44). Those studies focused on the primary tumor environment, yet MET may also be a critical therapeutic target in metastatic disease and chemotherapy-treated patients. Hypoxia and HIF1 expression are known to induce MET expression and activation of the downstream MET signaling cascades (45, 46). Because most primary and metastatic tumors contain hypoxic, avascular regions, MET inhibition also may be advantageous in combination with chemotherapy or in recurrent tumors that moderately express MET, but have high levels of hypoxia (47).
The present results are the first time that MET inhibition has been evaluated as a targeted therapeutic approach in vitro and in vivo in TNBC. Both our in vitro and in vivo preclinical models demonstrate that cabozantinib treatment is an effective therapeutic strategy in TNBC. Considering that TNBC is a highly heterogeneous disease, it is unlikely that a single targeted therapy will be effective for all TNBC patients. Therefore, it is critical that we develop multiple targeted therapeutic approaches in concert with diagnostic tests in order to identify TNBC patients who will benefit from specific therapeutic strategies. The necessity of companion diagnostics in the clinic has been underscored by the failure of TKIs in clinical trials, particularly MET inhibitors (48). These failures demonstrate that not only do we need clear diagnostic thresholds defined by receptor expression or activation, but we also need to understand the overall complexity of the kinase signaling networks. Because these signaling networks are heavily influenced by the TME, it is essential that preclinical studies utilize models, such as MAME, that can recapitulate this milieu. The combination of enhanced in vitro and in vivo models, companion diagnostics, and rationale clinical trial design will accelerate our development of successful targeted therapies.

Disclosure of Potential Conflicts of Interest
C.R. Graveel reports receiving commercial research grants from Mirati Therapeutics. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: C.R. Graveel, B.F. Sloane
Development of methodology: M. Sameni, E.A. Tovar, A. Chalasani, A. Anbalagan
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Sameni, E.A. Tovar, C.J. Essenburg, A. Chalasani, E.S. Linklater
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Sameni, A. Borgman, D.M. Cherba, M.E. Winn, C.R. Graveel, B.F. Sloane
Writing, review, and/or revision of the manuscript: M. Sameni, E.S. Linklater, M.E. Winn, C.R. Graveel, B.F. Sloane
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Borgman, A. Anbalagan, M.E. Winn
Study supervision: C.R. Graveel, B.F. Sloane

Acknowledgments
The authors thank Lisa Turner for her excellence in histopathology and Bryn Eagleson, Sylvia Timmer, and the VARI Vivarium for their continuous...
Cabozeantinib Inhibition Is Effective against TNBC

dedication. The authors also thank Dafna Kaufman for her assistance with this study. Confocal microscopy was performed in the Microscopy, Imaging and Cytometry Resources Core of Wayne State University, which is supported by NIH Center grant P30 CA022453 to the Karmanos Cancer Institute, and the Perinatology Research Branch of the National Institutes of Child Health and Development. Cell line authentication was performed through the Biobanking and Correlative Sciences Core and the Applied Genomics Technology Center of Wayne State University, which are supported in part by NIH Center grant P30 CA022453 to the Karmanos Cancer Institute. The authors are also grateful to Dan DeSantis for his assistance with image processing.

Grant Support

This study was funded by the Department of Defense (DoD) W81XWH-11-1-0003 (R.C. Graveel and C.R. Graveel) and the Breast Cancer Research Foundation (C.R. Graveel).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 28, 2015; revised August 25, 2015; accepted September 20, 2015; published OnlineFirst October 2, 2015.

References

35. Mullins SR, Sameni M, Blum G, Bogoy M, Sloane BF, Moin K. Three-dimensional cultures modeling premalignant progression of human
Clinical Cancer Research

Cabozantanib (XL184) Inhibits Growth and Invasion of Preclinical TNBC Models

Clin Cancer Res Published OnlineFirst October 2, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-15-0187

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2015/10/02/1078-0432.CCR-15-0187.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.