Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis

Sunny Guin1,2, Yuanbin Ru1,2, Neeraj Agarwal1,2, Carolyn R. Lew1,2, Charles Owens1,2, Giacomo P. Comi3, and Dan Theodorescu1,2,4

Abstract

Purpose: We demonstrated that amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) is a tumor growth suppressor and prognostic marker in human bladder cancer. Here we determine how AGL loss enhances tumor growth, hoping to find therapeutically tractable targets/pathways that could be used in patients with low AGL-expressing tumors.

Experimental Design: We transcriptionally profiled bladder cell lines with different AGL expression. By focusing on transcripts overexpressed as a function of low AGL and associated with adverse clinicopathologic variables in human bladder tumors, we sought to increase the chances of discovering novel therapeutic opportunities.

Results: One such transcript was hyaluronic acid synthase 2 (HAS2), an enzyme responsible for hyaluronic acid (HA) synthesis. HAS2 expression was inversely proportional to that of AGL in bladder cancer cells and immortalized and normal urothelium. HAS2-driven HA synthesis was enhanced in bladder cancer cells with low AGL, and this drove anchoragel-dependent and independent growth. siRNA-mediated depletion of HAS2 or inhibition of HA synthesis by 4-methylumbelliferone (4MU) abrogated in vitro and xenograft growth of bladder cancer cells with low AGL.

AGL and HAS2 mRNA expression in human tumors was inversely correlated in patient datasets. Patients with high HAS2 and low AGL tumor mRNA expression had poor survival, lending clinical support to xenograft findings that HAS2 drives growth of tumors with low AGL.

Conclusions: Our study establishes HAS2-mediated HA synthesis as a driver of growth of bladder cancer with low AGL and provides preclinical rationale for personalized targeting of HAS2/HA signaling in patients with low AGL-expressing tumors.

Clin Cancer Res; 1–10. © 2015 AACR.

Introduction

Amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) and the three glycogen phosphorylase (PYG) isoforms are the enzymes responsible for glycogen breakdown (glycogenolysis) in humans (1). Mutational inactivation of AGL leads to buildup of abnormal glycogen in the liver, heart, and skeletal muscle leading to glycogen storage disease III (GSD III; refs. 2, 3), a condition with good prognosis when treated by high protein and carbohydrate diet. While well characterized clinically, pathologically, genetically, and metabolically, the low prevalence of GSD III has limited epidemiologic investigation to determine whether such patients are at higher risk for other conditions.

In a recent study, we used a whole genome lentiviral shRNA-based in vivo screen to discover new tumor growth suppressors (4). This work identified AGL as a tumor growth suppressor and prognostic marker in human bladder cancer, for the first time assigning to AGL a role in cancer biology (4). We further showed that both wild type and enzymatically inactive variants of AGL can inhibit growth of cancer cells suggesting that in cancer, unlike in GSD III, AGL works nonenzymatically to exert its growth effects (4). Further demonstrating that AGL suppresses growth by such “moonlighting” or glycogenolysis independent mechanisms, was finding that loss of PYG, unlike that of AGL, did not promote growth of human bladder cancer cell lines (4).

Metabolic profiling showed that bladder cancer cells with low AGL are more dependent on extracellular glucose and SHMT2-mediated glycine synthesis for proliferation (4). While mechanistically insightful, this analysis did not provide any therapeutically tractable targets or pathways that could be used in patients with low AGL-expressing bladder tumors in the near term. To address this need, we carried out a whole genome transcription analysis using Affymetrix Human Genome U219 Arrays in human bladder cancer cells depleted of AGL. We focused on genes upregulated in response to diminished tumor AGL expression which in turn may both drive tumor growth and be potential therapeutic targets. We found that increased mRNA expression of hyaluronic acid (HA) synthase 2 and HA synthesis were found to drive tumor growth in bladder cancers with low AGL. We further showed that inhibition of HA synthesis is a...
potential therapeutic strategy for bladder tumors with low AGL expression.

Materials and Methods
Cell line and biochemical reagents
UMUC3 and T24T control and AGL-depleted human bladder cancer cell lines were cultured and used as described (4). MGHU4 human bladder cancer cells were a generous gift from Dr. Fradet (Harvard Medical School, Boston, MA; ref. 5) and AGL knockdown was achieved using shRNA TRCN0000035082 (Sigma-Aldrich) designated as shAGL1. These three bladder cancer cell lines were chosen for the study because they show an induction in growth with AGL loss, and therefore serve as good model cell lines to study AGL biology in bladder cancer. Stable AGL knockdown in UMUC3 was achieved using a second shRNA TRCN0000035080 (Sigma Aldrich) designated as shAGL2. Bladder cell lines hTERT and TRT-HU1 were generous gifts from Drs. Adam (Children’s Hospital Boston, Boston, MA; ref. 6) and Knowles (St James’s University Hospital, Leeds, UK; ref. 7), respectively, and AGL knockdown was achieved using shAGL1 above. Stable HAS2 knockdown was achieved in T24T cells with and without stable knockdown of AGL under neomycin resistance with shRNA TRCN00000432805 (Sigma Aldrich), MISSION plKO.1-puro or plKO.1-neo non-mammalian shRNA control plasmid DNA (SHC002, Sigma Aldrich) was used as control for the gene knockdown experiments. 4-Methylumbelliferone (4MU, cat. # M1508-10G) was obtained from Sigma Aldrich. HA (cat. # GLR001) was obtained from R&D Systems. siRNA sequences 5'-GCTGGTTGATTGTCGTT-3' (first) and 5'-GGTGGTCACGACACT-3' (second) were used at a concentration of 50 nmol/L to knockdown HAS2 for different experiments. siGENOME SMARTpool siRNAs were used to knockdown RRAGD (M-016120-1-0005) and TULP3 (M-011415-1-0005) at a concentration of 20 nmol/L. siRNAs were purchased from Dharmacon and transfected using Lipofectamine RNAiMAX (Invitrogen) using manufacturer’s instruc-

Microarray and statistical analysis
UMUC3 cells transduced with nontargeted shRNA or shRNA specific to AGL. (shAGL1 described above) were grown to subconfluence followed by standard mRNA isolation. Whole genome transcription analysis was done using Affymetrix Human Genome U219 Arrays (GEO accession no. GSE73456). Differentially expressed genes between AGL-depleted and control cells were identified with false discovery rate (FDR) of 2% using linear models implemented in the limma package (8) in R (Supplementary Table S1). Patient microarray and clinicopathologic information is shown in Supplementary Table S2. Raw microarray data were processed and normalized by the Robust Multi-array Average algorithm implemented in the affy package in R (9). In case of multiple probe sets for one gene, the probe with the highest mean expression across all samples was selected to represent the gene’s expression. Gene expression differences between two groups of samples (tumor vs. normal, high grade vs. low grade, and muscle invasive (M1) vs. non-muscle-invasive tumors (NM1)) were tested with Wilcoxon rank sum tests. Associations of numerical (continuous) and categorical gene expression with survival were examined by Cox proportional hazards models and log-rank tests. For multivariable survival analysis, a full model included AGL and HAS2 expression and three clinically relevant variables (grade, T stage, and N stage). A best model (i.e., final model) with the lowest Akaike information criterion (AIC) was also generated through forward stepwise addition of these five variables. Data from in vitro and in vivo experiments were analyzed by two-tailed Student t test with unequal variances. Error bars denote SD or SEM as indicated.

PCR and Western blot analysis
HAS1-3, RRAGD, and TULP3 mRNA expression was determined by the △ΔCt method with GAPDH as control for human bladder cancer cell lines and 18S for murine bladder tissues. Expression was normalized to control-treated cells to determine gene expression in AGL knockdown cells, and to shCTL-neo/shCTL-puro cells for expression of HAS2 in HAS2 and AGL dual stable knockdown T24T cells. HAS1 primer: forward 5’-TGCTGGCCTCGTTTCTAC-3’ reverse 5’-CTCTGTTGACTGATTGACATG-3’; HAS2 primer: forward 5’-TCCCCGTTGACAGATGACTG-3’ reverse 5’-GGCTGGTAGCACATGCT-3’; HAS3 primer: forward 5’-TCCCTCTACTCCCTCTCTAT-3’ reverse 5’-CTGGAACGCTCGTGCTGCAAT-3’; RRAGD primer: forward 5’-TCTGACCTCACGAGCAGC-3’ reverse 5’-TGACTGTTGGTGACGGCAAA-3’; TULP3 primer: forward 5’-TTTGAAAGTGGTGTTGGC-3’ reverse 5’-CCGGAATCTTCTAAGG-3’; VCAN primer: forward 5’-TACACCTATACAATGACTGAC-3’ reverse 5’-AAAGAATGCTGTTGGATGAGG-3’; EREG primer: forward 5’-GGATGCGCATGCTGATGTG-3’ reverse 5’-AAGGGTGTTGAGGACGTAA-3’; GAPDH primer: forward 5’-TCTGTTGGCTGCGAGCCA-3’ reverse 5’-ACACCGCAGCACATTACGAC-3’; 18S primer: forward 5’-TAATTCGATACGACGAGAC-3’ reverse 5’-TCTAAGGGCATACGACC-3’ were used for the RT-
PCR experiments. The HAS1-3 primers mentioned above were used for both human and mice tissues. Antibodies used for westerns were anti-AGL (Abgent) and anti-α-tubulin (Calbiochem). HRP (Cell Signaling Technology) labeled mouse or rabbit secondary antibodies were used chemiluminescence using ECL (Pierce).

Hyaluronic acid ELISA
Fresh media is applied 72 hours after HAS2 siRNA transfection in control and AGL knockdown cells followed by HA analysis by ELISA 24 hours later. T24T cells with stable knockdown of AGL and HAS2 were plated and fresh media were added when cells were 60% to 65% confluent followed by HA ELISA 24 hours later. Cells with and without AGL were grown to a confluence of 60% to 65% followed by fresh media addition with different 4MU concentrations to evaluate the impact of 4MU on HA synthesis and secretion after 24 hours. HA ELISA was conducted as per manufacturer instructions using a TECO HA ELISA kit.

Anchorage-dependent and independent proliferation and xenograft tumor growth
Anchorage-dependent and independent proliferation was measured as described previously (4). For xenograft experiments, 4-week-old athymic NCr-nu/nu mice were obtained from either NCI (NCI-Frederick, Frederick, MD) or Charles River Laboratory. Cells with and without AGL depletion were transfected with control or HAS2 siRNA. Forty-eight hours after transfection, cells were injected subcutaneously in the left and right flanks of mice; UMUC3 at 25 x 10^3 cells per site, a cell concentration at which cells have very low tumor take (4) and T24T cells with dual stable knockdown of AGL and HAS2 at 10^5 cells per site. To study the effect of 4MU on the growth of bladder cancer xenografts, UMUC3 and T24T cells with AGL depletion were injected subcutaneously in mice at 2 x 10^6 and 10^5 cells per site. Once the tumors were palpable mice were treated with 4MU at 200 mg/kg daily (except weekend). Tumors were measured and tumor volume calculated as described (4).

Figure 1.
Transcriptional profiling of human bladder cells as a function of AGL followed by evaluation of gene expression in clinical specimens. A, diagram of heatmap and biomarker analysis carried out on differentially regulated genes with shRNA-mediated AGL depletion. *, representative Western blot insert of one of two samples used for expression profiling. Thirty-eight of the top 100 (Supplementary Table S1) differentially expressed genes were upregulated with AGL loss and were examined for association of their expression with clinicopathologic variables, such as malignancy (tumor vs. normal), high tumor stage, high tumor grade, and patient survival in bladder cancer patients described in Supplementary Table S2. Bar graph of microarray mRNA expression (Fold over UMUC3shCTL) of 7 of 38 genes that had positive correlation with at least 3 of 4 clinicopathologic variables (indicated below graph). B, qRT-PCR for HAS2, RRAGD, VCAN, EREG, and TULP3 in UMUC3 cells with (shCTL) or without AGL (shAGL1 and shAGL2; AGL knocked down with two different shRNA constructs as described in Materials and Methods; n = 3). AGL knockdown was validated by Western blot analysis (inset). Results are shown as mean ± SD; *, P < 0.05 by Student t test.
Results

Expression profiling of human bladder cancer cells in response to AGL depletion

UMUC3 cells were transduced with control shRNA or shRNA specific for AGL and whole genome transcription analysis performed revealing 137 differentially regulated probes at FDR of 2% representing 100 genes (Supplementary Table S1). To improve the likelihood of identifying therapeutic targets we focused on genes upregulated with AGL loss and found 38 genes (Fig. 1A and Supplementary Fig. S1). Expression of these were evaluated in human tumors (Supplementary Table S2) for evidence of association with 4 clinicopathologic variables: malignancy (tumor vs. normal), stage, grade, and patient survival. Seven of 38 genes (SEA3A, HAS2, RRAGD, VCAN, EREG, TULP3, and UCHL1) had a statistically significant positive correlation with at least 3 of these 4 variables using a numerical (continuous) input of the gene expression level avoiding the requirement of empirical cutoffs (Fig. 1A). Interestingly, none had been implicated in AGL biology or function. Ubiquitin carboxyl-terminal esterase L1 (UCHL1) and semaphorin 3A (SEMA3A) have been shown to be tumor suppressors in other tumor models (10–13), hence were not investigated further here.

In contrast, we showed Versican (VCAN) and epiregulin (EREG) contribute to bladder tumor growth (14, 15) and while HAS2 has been implicated in regulating bladder tumor growth, its role had yet to be explored in detail (16, 17). Finally, Tubby like protein 3 (TULP3) and RAS-related GTP binding D (RRAGD) had never been implicated in bladder cancer (18–20). Next, we carried

Figure 2.

HAS2 is a driver of growth of bladder tumors with low AGL expression. A–C, qRT-PCR demonstrating efficacy of HAS2, RRAGD, or TULP3 depletion in UMUC3 control (shCTL) and AGL knockdown (shAGL 1 and shAGL 2) cells. Cells were plated and 24 hours later transfected with scrambled or directed siRNA against specific genes. Details of siRNA used are in Materials and Methods. Cells were harvested at 72 hours for mRNA followed by qRT-PCR analysis (n = 3). D–F, 48 hours after UMUC3 shCTL and shAGL1 were transfected with various siRNAs, they were plated for monolayer growth (n=6) in 96-well plate (10³ cells/well) for 5 days followed by Cyquant assay (shAGL1 = shAGL in figure). G, forty-eight hours after UMUC3 shCTL and shAGL1 were transfected with siRNA against HAS2, they were plated in agar for evaluation of anchorage-independent growth (15 x 10³ cells/well) in 6-well plate (n = 3; shAGL1 = shAGL in figure). H, qRT-PCR for HAS2 in T24T cells with dual stable knockdown of AGL (shAGL1 and HAS2 (n = 3; shAGL1 = shAGL in figure). I and J, impact of HAS2 depletion on monolayer (n = 6) and anchorage-independent (n = 3) growth in T24T cells with (shAGL1) and without (shCTL) AGL depletion. A total of 10³ and 15 x 10³ cells were plated in 96-well plates and 6-well plate for monolayer growth (I) and agar growth (J; shAGL1 = shAGL figure). Results are shown as mean ± SD; *, P < 0.05 by Student t-test.
AGL loss drives in vitro bladder cancer cell growth in part via HAS2

To determine the impact of these validated genes in bladder cancer growth as a function of AGL expression, we used siRNA to knockdown these genes (HAS2, RRAGD, VCAN, EREG, and TULP3) in conjunction with AGL depletion using two different shRNAs (shAGL1 and shAGL2). We did not evaluate VCAN as it had already been implicated in bladder cancer (14). Of the three, HAS2 depletion had the most marked reduction of proliferation in UMUC3 cells with AGL loss (Fig. 2D–F and Supplementary Fig. S3). A second siRNA against HAS2 was also able to significantly reduce the proliferation of UMUC3 cells with AGL loss (Supplementary Fig. S4A) confirming the dependence of bladder cancer cells with AGL loss on HAS2 expression (Fig. 2E). Furthermore, we examined the bladders obtained from AGL knockout mice developed to study GSDIII (24) and observed that Has2 is overexpressed in these compared with littermate controls, whereas expression of the other Has isoforms was reduced (Fig. 3C). These results reveal that HAS2 expression is induced by AGL loss in both mouse and human urothelium as well as in human bladder cancer cells, and that AGL loss drives in vitro bladder cancer cell growth in part via HAS2. This data suggests the AGL–HAS2 regulatory axis is of significant biologic importance in normal physiology and cancer.

Figure 3.

AGL and HAS2 expression are inversely correlated in immortalized and normal urothelium. A, qRT-PCR analysis for HAS isoforms HAS1 and HAS3 with AGL knockdown using shAGL1 shRNA construct (n = 3) (shAGL1 = shAGL in figure); ND, not detectable. B, qRT-PCR for HAS2 in immortalized but non-transformed human urothelial cells with AGL knockdown using shAGL1 shRNA construct (n = 3). AGL knockdown was validated by Western blot analysis (shAGL1 = shAGL inset). C, qRT-PCR analysis on bladders of wild-type (WT) and AGL knockout (KO) mice for Has-3 (n = 3). AGL knockdown was validated by Western blot (inset) in two individual murine bladders (WT 1, 2 and KO 1, 2) of WT and AGL-KO mice, respectively. Results are shown as mean ± SD; *, P < 0.05 by Student t test.
Hyaluronic acid synthesis by HAS2 drives bladder cancer growth

HA synthesized by HAS can contribute to tumor growth (21, 22). Hence, we asked whether HA synthesis by HAS2 is increased with AGL loss. Interestingly, UMUC3, T24T, and MGHU4 cells secrete more HA in response to AGL depletion and this increase disappears when HAS2 is depleted (Fig. 4A and Supplementary Fig. S5A and S5B). To evaluate the importance of HA in promoting growth of bladder cancer cells with low AGL, we treated UMUC3 and T24T shCTL and shAGL cells with 4MU, an inhibitor of HA synthesis (25, 26). 4MU treatment reduced HA in the cell media of shAGL cells to near control levels when used at a concentration of 400 μmol/L or higher (Fig. 4B). 4MU at a concentration of 400 μmol/L also inhibited proliferation of UMUC3 and T24T cells depleted of AGL to a similar degree to knockdown of HAS2 (Fig. 4C and Supplementary Fig. S5C). Next, we treated UMUC3 and T24T with HA and 4MU together and observed a partial rescue of the 4MU growth inhibitory effect by HA (Fig. 4D and Supplementary Fig. S5D). While these data are consistent with other reports which show that commercially available HA can only partially rescue such growth-inhibitory effects (27, 28), it also suggests that 4MU-mediated growth inhibition is due to inhibition of HA synthesis and signaling.

HA synthesis blockade slows bladder cancer xenograft growth in vivo

We investigated whether reduced HAS2-mediated HA synthesis can slow xenograft tumor growth. We knocked down HAS2 in UMUC3 shAGL1 cells. Cells were then injected subcutaneously into nude mice and tumor growth monitored (4). UMUC3 cells with both AGL and HAS2 depletion had reduced tumor growth compared with cells with only AGL loss and UMUC3 control cells ± HAS2 expression (Fig. 5A). A similar observation was made in T24T cells (Fig. 5B). Interestingly, loss of HAS2 had minimal growth inhibitory effect on control cells (shCTL) supporting the notion that HAS2/HA mediate the increased growth seen with AGL loss.

To evaluate the potential of HA synthesis inhibition as a therapeutic option for bladder cancer patients with reduced tumor AGL expression, we investigated the impact of 4MU on the in vivo growth of UMUC3 and T24T bladder cancer cell lines with stable depletion of AGL. All mice had palpable tumors after 10 days; they were either injected intraperitoneally every 5 days per week with 4MU at a dose of 200 mg/kg or vehicle control. 4MU inhibited the xenograft growth of UMUC3 and T24T (Fig. 5C and D) indicating that 4MU or similar drugs can be potential therapeutic options for bladder cancers with low AGL expression.

Figure 4.

Hyaluronic acid production drives growth of bladder cancer cells with low AGL. A, HA in cell culture media of UMUC3 and T24T cells with loss of HAS2 in cells with (shAGL1) and without (shCTL) AGL depletion. (i) UMUC3 (shCTL and shAGL1) cells were plated followed by siRNA-induced knockdown of HAS2. Fresh media were added 48 hours after transfection followed by HA ELISA on the media 24 hours later (n = 3); (ii) T24T cells with dual stable knockdown of AGL and HAS2 were plated; 24 hours later, media were changed, and 24 hours after that, HA analysis was carried out (n = 3; shAGL1 = shAGL in figure). B, UMUC3 (i) and T24T (ii) cells with (shAGL1) and without (shCTL) AGL loss were plated. Next day, media with varying concentrations of 4MU were added and cells incubated for 24 hours, after which HA analysis on media was carried out (n = 3; shAGL1 = shAGL in figure). C, UMUC3 (shCTL and shAGL1) cells (10^4) were plated in 96-well plates (n = 6) with 400 μmol/L 4MU for 5 days followed by monolayer growth assay (shAGL1 = shAGL in figure). D, UMUC3 (shCTL and shAGL1) cells (10^3) were plated in 96-well plates (n = 6) with 400 μmol/L 4MU or 4MU+HA for monolayer growth assay (shAGL1 = shAGL in figure). Results are shown as mean ± SD; *, P < 0.05 by Student t test.
HA synthesis blockade slows bladder cancer xenograft growth. A, UMUC3 (shCTL and shAGL1) cells transfected with scrambled (siCTL) or HAS2 siRNA (siHAS2) were injected subcutaneously in the left and right flank of nu/nu mice (25 × 10^5 cells/site). Tumor volume was measured in a total of 10 injection sites per condition (shAGL1 = shAGL in figure). B, T24T cells with stable knockdown of both AGL and HAS2 were injected subcutaneously in the left and right flank of nu/nu mice (10^5 cells/site). Tumor volume was measured in a total of 10 injection sites (shAGL = shAGL in figure). C and D, UMUC3 and T24T AGL knockdown cells (shAGL1) were injected subcutaneously in the left and right flank of nu/nu mice (10^5 cells/site) for UMUC3 and T24T respectively. Tumors were palpable in all mice at 10 days, at which point mice were randomly assigned to intraperitoneal treatment with vehicle control or 4MU (200 mg/kg daily). shAGL1 = shAGL in figure. Results are shown as mean ± SEM, *P < 0.05 by Student t test.

The relevance of AGL and HAS2 mRNA expression in human bladder cancer

The role of HAS2 mRNA as a predictor of bladder patient outcome is unclear (16). We detected that high HAS2 mRNA expression is observed in high-grade (HG) and muscle-invasive (MI) bladder tumors compared with low grade (LG) and non-muscle–invasive tumors (NMI; Fig. 6A) across two independent patient datasets. Next, we evaluated how the mRNA expression of HAS2 correlates with that of AGL in bladder cancer patients across 5 independent bladder cancer patient datasets comprising of 552 patients (Supplementary Table S2). We observed that AGL mRNA expression has a negative correlation with HAS2 mRNA expression in all datasets with statistical significance in 4 of 5 datasets (Fig. 6B). When patients were divided into MI and NMI forms of the disease, the correlation findings between AGL and HAS2 were similar (data not shown). The statistically significant negative correlations were also observed in advanced (T3/T4 and high grade) cancer in 3 of the datasets and in localized (Ta/T1 and low grade) cancer in 1 dataset (Supplementary Table S3). These data provide clinical support and further confirmation of biologic relevance of the observation made in human bladder cancer cells and in AGL knockout mice that low or absent AGL leads to high HAS2 expression.

We also explored whether expression of AGL and HAS2 can stratify patient outcome. The primary objective here was to determine whether such expression levels could eventually be used to identify the optimal patient cohort who may be enrolled in future clinical trials with inhibitors of HA signaling. The secondary objective was to lead credence to the hypothesis that AGL affects tumor biology by HAS2 as well as other effectors such as SHMT2 (4). Our earlier analysis (Fig. 1A) using a numerical (continuous) input of the gene expression shows that high HAS2 expression is associated with poor overall patient survival in Kim and colleagues (29) dataset with HR of 1.55 (P = 0.33). In contrast, high AGL expression is associated with an HR = 0.33 (P = 0.013) using continuous input denoting its tumor growth-suppressive features. Next, we showed the impact of these on overall survival using Kaplan–Meier analysis of patients split into two groups. AGL high–expressing were those patients in the top 70% while low expressors were those in the bottom 30% (Fig. 6C, i). In the case of HAS2, the cutoff was top 40% versus bottom 60% (Fig. 6C, ii). In both cases, survival was significantly stratified...
by these variables, supporting the more general continuous analysis above. When analyzing AGL and HAS2 expression in a multivariable survival model that included 3 clinically relevant variables (grade, stage, and nodal status), AGL provided marginally significant, independent prognostic value (HR = 0.62, P = 0.069; the full model in Supplementary Table S4). In a final model that selected a concise and optimal set of variables via forward step-wise addition of variables, AGL was selected over stage and was an independent prognostic factor (HR = 0.60, P = 0.044; Supplementary Table S4).

Next, we examined the utility of combining AGL and HAS2 expression in stratifying bladder patient outcome. Using continuous input of AGL/HAS2 expression level ratio, we observed that bladder cancer patients with high ratios had the better overall survival HR = 0.01 (P = 0.001). Kaplan–Meier survival using the same cutoffs as for individual variables above also revealed a significant stratification of survival but with a somewhat better HR of 2.55 (Fig. 6C, iii). Importantly, both analyses indicated that combining these two variables enhanced the magnitude of the stratification as measured by the HR compared with using either variable alone. However, the combined AGL and HAS2 expression was not significant in multivariable survival analyses (Supplementary Table S5). Taken together, AGL and HAS2 mRNA expression can stratify patient overall survival in both univariable and multivariable models while combining expression of these enhances such stratification in a univariable fashion.

Discussion

Our study is the first to establish HAS2-mediated HA synthesis as a driver of growth of bladder cancer cells with low AGL and provide preclinical rationale for personalized targeting of HAS2/HA signaling in patients with low AGL–expressing tumors. Several findings of our study are intriguing and merit discussion. The HAS enzyme family consists of three isoforms implicated in HA synthesis. While all are implicated in tumor formation and...
progression in a variety of studies (21, 23), only HAS2 expression is increased in both human bladder cancer and immortalized urothelial cell lines with loss of AGL, as well as in bladders of AGL knockout mice. This observed relationship between AGL and HAS2 expression in immortalized human and benign murine urothelium suggests AGL regulates biology beyond that linked to glycogen storage as HAS2 is the most common HAS isoform expressed by mammalian tissues and HA synthesized by HAS2 is important for numerous cellular functions.

In addition to AGL, another interesting finding links HA to AGL biology. HA is a high molecular weight polysaccharide and core component of the extracellular matrix (20–22). UDP-GlcUA and UDP-GlcNAc are precursors of HA and HAS substrates (20, 30). In fact, HA synthesis consumes large quantities of these and their concentration can be rate limiting for HA synthesis. While the content of these UDP sugars varies between cell types and responds to metabolic changes (20, 30), glucose is known to be the major substrate for these. Interestingly, our studies in bladder cancer cells revealed that loss of AGL increases glucose uptake and utilization and this promotes growth (4). In addition, high cytosolic glucose can activate the PKC pathway which in turn induces HAS expression, increasing HA synthesis (31, 32).

HAS2 expression is transcriptionally regulated by other signaling pathways in addition to glucose. While it is unclear what directly drives HAS2 gene overexpression in response to AGL loss several mechanisms can be envisioned. First, it is conceivable that HAS2 expression and HA synthesis are both driven by enhanced glucose driven by loss of AGL, as discussed above. With loss of AGL, glucose is channeled into HA as a major end metabolite, and that HA imparts pro-tumorigenic signaling. Second, as yet undiscovered proteins with which AGL interacts can be positive regulators of HAS2, with the model being that when AGL is abundant, these are kept in an inactive form by either sequestration or posttranslational modification for example.

Analysis of AGL and HAS2 expression in human bladder cancer revealed these are negatively correlated supporting and generalizing the in vitro findings on human cell lines and tissues from transgenic mice. High HAS2 mRNA expression is observed in HG and MI bladder tumors and is associated with poor bladder cancer patient outcome. While HAS1 and HAS3 have both been implicated in bladder cancer biology (16, 17, 27, 33), neither mRNA is induced by AGL depletion suggesting that these genes are not responsible for the aggressive biology associated with AGL loss. Analysis showed that patients with low AGL and high HAS2 expression had poor overall survival. The greater hazard rate in the combined analysis compared to AGL and HAS2 alone indicates that expression of HAS2 in combination with AGL may be a better predictor of patient outcome and response to therapy with HA synthesis inhibitors than either alone. Furthermore, taking the correlation of AGL and HAS2 expression in both experimental systems and patient tumors together with the enhanced stratification of patient outcome by both variables leads us to speculate that AGL and HAS2 have both related and independent effects on tumor biology. This notion is consistent with data showing that loss of AGL also drives growth signals via SHMT2 (4) in addition to HAS2.

Finally, here we show that an increase in HA synthesis driven by HAS2 is responsible for in vitro and in vivo growth of bladder cancer cells with AGL loss. RNAi targeting of HAS2 and inhibition of HA with 4MU in AGL-depleted cells both suppressed the growth of bladder cancer cells in vitro and in vivo indicating that the tumor-promoting function of HAS2 is dependent on its enzymatic activity and that HA synthesis in turn leads to tumor growth in response to AGL depletion.

4MU is a well known inhibitor of HA synthesis (25, 34). It is a nontoxic drug which is also used as a dietary supplement in Europe and Asia to improve liver health (34). Recent studies have shown that 4MU plays an important role in inhibiting tumor growth and metastasis. In prostate cancer, 4MU plays a critical role in cancer prevention and also reduces primary tumor growth and metastasis (34). However, the role of 4MU in bladder cancer prevention and in treating primary and metastatic bladder cancer is unknown. Ours is the first study to show that 4MU can inhibit xenograft growth of bladder cancer cells that have lost AGL. We plan to use chemical carcinogenesis to induce bladder cancer in AGL knockout mice to study the role 4MU in bladder cancer prevention, primary tumor growth, and metastasis. We propose that 4MU will be a viable therapeutic option for personalized treatment of bladder cancer patients with low AGL expression.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: S. Guin, C.R. Lew, D. Theodorescu

Development of methodology: S. Guin, D. Theodorescu

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Guin, N. Agarwal, C.R. Lew, C. Owens, G.P. Comi

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Guin, Y. Ru, N. Agarwal, C.R. Lew, C. Owens, D. Theodorescu

Writing, review, and/or revision of the manuscript: S. Guin, Y. Ru, C.R. Lew, D. Theodorescu

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D. Theodorescu

Study supervision: S. Guin

Grant Support

This work was supported in part by NIH grant CA143971 (to D. Theodorescu), the Bladder Cancer Advocacy Network (BCAN) Young Investigator Award and the Cancer League of Colorado, research grant (to S. Guin), and the NIH Ruth L. Kirschstein F32 National Research Service Award (NRSA) F32CA189735 (to C.R. Lew).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received July 20, 2015; revised September 28, 2015; accepted October 11, 2015; published OnlineFirst October 21, 2015.

References

Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis

Sunny Guin, Yuanbin Ru, Neeraj Agarwal, et al.

Clin Cancer Res Published OnlineFirst October 21, 2015.

Updated version Access the most recent version of this article at:

Supplementary Material Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/10/21/1078-0432.CCR-15-1706.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.