A Phase Ib/II Study of Afatinib in Combination with Nimotuzumab in Non-Small Cell Lung Cancer Patients with Acquired Resistance to Gefitinib or Erlotinib

Ji Yun Lee¹*, Jong-Mu Sun¹*, Sung Hee Lim¹, Hae Su Kim, Kwai Han Yoo¹, Ki Sun Jung¹, Haa-Na Song¹, Bo Mi Ku², Jiae Koh², Yeon-Hee Bae², Se-Hoon Lee¹, Jin Seok Ahn¹, Keunchil Park¹, and Myung-Ju Ahn¹

¹Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. ²Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

*These authors contributed equally to this study.

Running Title: afatinib and nimotuzumab in non-small cell lung cancer

Key Word: non-small cell lung cancer, afatinib, nimotuzumab, EGFR, resistance

Grant Support: This study was supported in part by Boehringer Ingelheim and by the Samsung Biomedical Research Institute Grant (GE1-B3-081-1).

Conflicts of Interest: The authors declare no conflicts of interest.
Corresponding Author: Myung-Ju Ahn, MD, PhD, Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-710, Korea; e-mail:silkahn@skku.edu or silk.ahn@samsung.com

This study was presented at 2015 ASCO meeting.

Abstract Word Count: 250

Text Word Count: 2939

Total Number of Figures: 3

Total Number of Tables: 3
Translational Relevance

Acquired resistance after initial clinical benefit inevitably occurs in patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer, usually within 1 years of starting gefitinib or erlotinib. Afatinib is a potent irreversible ErbB family blocker and nimotuzumab is a humanized anti-EGFR monoclonal antibody. We aim to assess the safety and efficacy of dual inhibition of EGFR with afatinib and nimotuzumab in kinase inhibitor-resistant EGFR-mutant NSCLC. Combination of afatinib and nimotuzumab showed acceptable safety profiles and encouraging antitumor activity in patients with acquired resistance to gefitinib or erlotinib.
Abstract

Purpose: In this phase Ib/II study, we aimed to assess the safety and efficacy of afatinib (A) plus nimotuzumab (N) in advanced non-small cell lung cancer (NSCLC) patients with acquired resistance to gefitinib or erlotinib.

Experimental Design: In phase Ib stage, patients received A (40mg or 30mg once daily) plus N (100mg or 200mg once weekly) for 28-day cycles to determine the recommended phase II dose (RPIID). The safety and efficacy of RPIID dose was evaluated in phase II stage.

Results: In total, 50 patients were enrolled (13 to phase Ib and 37 to phase II). In the first dose-finding cohort (A 40mg plus N 100mg), one patient experienced dose-limiting toxicity (DLT) of grade 3 diarrhea and in the subsequent cohort (A 40mg plus N 200mg), two DLTs (grade 3 diarrhea and grade 3 neutropenia) occurred in 2 out of 6 patients. Accordingly, RPIID was determined as A 40mg plus N 100mg. In 44 patients treated with RPIID, 7 (16%) patients had grade 3 toxicities; skin rash (7%), diarrhea (5%), acne (2%), and fatigue (2%). The overall response rate was 23% and the median duration of response was 4.3 months (range, 0.7-16.2 months). The median PFS and OS were 4.0 months (95% CI, 2.3-5.7 months) and 11.7 months (95% CI, 9.4-14.0 months), respectively.

Conclusions: Combination treatment of afatinib and nimotuzumab demonstrated an acceptable safety profile and encouraging antitumor activity in advanced NSCLC patients with acquired resistance to gefitinib or erlotinib. Larger phase III trial is warranted to confirm its efficacy and safety.
Introduction

Non-small cell lung cancer (NSCLC) is one of the leading causes of deaths from cancer worldwide (1, 2). Randomized phase 3 studies have shown better progression-free survival (PFS) and responses with gefitinib or erlotinib than platinum-based chemotherapy for NSCLC harboring epidermal growth factor receptor (EGFR) (3-8). However, most of NSCLC patients treated with EGFR tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance, necessitating alternative treatment strategies (9, 10). Approximately half of patients have a secondary EGFR mutation in exon 20 (T790M), which is proposed to cause resistance by interfering with binding of TKIs or by increasing the affinity for ATP (11, 12).

New approaches for treatment beyond progression were explored in preclinical studies on dual targeting of the EGFR (13, 14). Combined treatment with EGFR TKIs and anti-EGFR monoclonal antibodies (mAbs) resulted in superior antitumor activity than either agent given alone in cancer cell lines (14). Afatinib is an oral, irreversible ErbB family blocker that selectively and potently blocks signaling from all relevant ErbB family receptors (ErbB1, ErbB2, and ErbB4) (15, 16). While afatinib showed clinical efficacy as single agent in the TKIs-naïve setting (17), the response rates in acquired resistance setting were below 10% (18). In xenograft models of TKI-resistant tumors harboring T790M mutation, dual inhibition of EGFR with afatinib plus cetuximab induced encouraging tumor shrinkage (19). This combination regimen has demonstrated an augmented response rate of 29% for TKI-resistant EGFR mutant NSCLC patients in a recent clinical trial (20). Notwithstanding promising efficacy of this combination therapy for heavily pretreated patients, grade 3 adverse events, mainly skin rash and gastrointestinal toxicities occurred in nearly half of the patient population, making it difficult to adopt its regimen for wider clinical use.
Nimotuzumab is a humanized IgG1 mAb against EGFR, which binds to the extracellular domain III of EGFR with a moderate affinity (21). Several phase I and II trials with nimotuzumab have mainly focused on head and neck cancer and brain malignancies, and showed antitumor activity while minimizing skin toxicity compared with other anti-EGFR drugs (22-24). Bebb et al. and Choi et al. confirmed the minimal toxicity of nimotuzumab in combination with thoracic radiation, and also demonstrated favorable results compared with historical controls in a NSCLC (25-27). Therefore, we hypothesized that dual blockade of EGFR with afatinib and nimotuzumab demonstrated robust clinical activity with a manageable safety profile.

Patients and Methods

Patient population

Eligible patients were at least 20 years old and had a diagnosis of stage IIIB/IV NSCLC harboring activating EGFR mutation (exon 19 deletion or L858R) who had progressed on gefitinib or erlotinib. Patients with unknown genotype of EGFR, were included if disease progression was present after at least 6 months of treatment with gefitinib or erlotinib. All patients had measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST version 1.1), and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 1. Patients with prior afatinib or nimotuzumab therapy, uncontrolled or symptomatic central nervous system metastasis, active pulmonary fibrosis, uncontrolled heart disease, and inadequate hematologic, hepatic, or renal function were excluded.

All patients provided written informed consent before study enrollment. The study was
approved by the Institutional review boards of the Samsung Medical Center and conducted in accordance with the Declaration of Helsinki and the Good Clinical Practice guidelines.

Study design and treatment

This is a phase Ib/II, open-label, single-arm study comprising of two stages: dose-escalation and dose-expansion (Figure 1). The phase Ib followed a standard 3 + 3 dose-escalation design to determine the maximum-tolerated dose (MTD) and the recommended phase II dose (RPIID) of combination therapy of afatinib and nimotuzumab. Treatment consisted of oral afatinib at two dose levels (30mg or 40mg per day) and intravenous infusion of nimotuzumab at two dose levels (100mg or 200mg weekly) until disease progression or unacceptable toxicity. Each treatment cycle was defined as 28 days regardless of omitted doses.

Dose-limiting toxicities (DLTs) were defined as follows: grade 2 left heart failure; grade 2 diarrhea refractory to anti-diarrheal medication for 7 days or grade 3 to 4 diarrhea refractory to anti-diarrheal medication for 2 days; grade 3 to 4 rash; other grade 3 to 4 non-hematologic toxicities; or treatment-related death. Toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0). The dose level I started with 40mg of afatinib plus 100mg of nimotuzumab and was subsequently escalated to dose level II (afatinib 40mg + nimotuzumab 200mg). If ≥ 2 out of 3 subjects experienced DLT in the initial cohort, de-escalated dose (afatinib 30mg + nimotuzumab 100mg) would be considered. In the absence of DLTs among initial three patients, dose escalation would proceed according to treatment protocol. If one DLT is observed in the initial cohort, then three additional patients would be treated at dose level I. The MTD was determined as the highest dose where no more than one of six patients develop DLT. The RPIID was defined as the MTD or the higher dose level of afatinib (40mg) and
nimotuzumab (200mg) if MTD is not reached. Intra-patient dose escalation was not permitted.

In phase II stage, all patients received a fixed dose of afatinib plus nimotuzumab as determined by dose-finding phase Ib stage. The primary objectives of the phase II stage were overall response rate (ORR) and occurrence of adverse events. The secondary objectives included PFS and overall survival (OS).

For patients who experienced severe toxicities during treatment, dose modification was permitted for the subsequent cycle.

Assessments

At baseline, all patients provided medical history and underwent physical examination. Laboratory evaluations and computed tomography (CT) scans of the chest and of other known metastatic regions were performed within 2 weeks of the first dose of study treatment. EGFR (exon 18-21) mutations were analyzed by directional sequencing or the peptide nucleic acid-locked nucleic acid (PNA-LNA) PCR clamp method especially for detection of T790M (28, 29). Tumor response was evaluated according to the response evaluation criteria in solid tumors (RECIST version 1.1) after 4 weeks of treatment (1 cycle) and every 8 weeks (2 cycles) thereafter.

Statistical analysis

The sample size of the phase II stage was calculated using the Simon two-stage minimax design. Predicated on the results of afatinib under a Named Patient Use (NPU) (30), we presumed H_0 to be less than 20% of the ORR and H_1 to be more than 40%, yielding a sample size of 33 with 80% power and a two-sided significance level set as $\alpha = 0.1$. If more than 5 of 18 patients in stage I showed treatment response, then the study would proceed to stage II. If more than 10 of the total 33 patients showed treatment response, H_0 would be
rejected. Assuming a 10% dropout, a total of 37 patients were required for this study.

For analysis, we included all patients who received at least one dose of study drug. For efficacy analysis, we included all patients enrolled in this study. Separate analysis of efficacy was performed for each subgroup, including phase Ib stage, phase II stage, and patients who were treated with RPIID of afatinib and nimotuzumab. Survival estimates were calculated according to Kaplan-Meier method. All analyses were performed using SPSS 20.0 (IBM SPSS Statistics, IBM Corp., Armonk, NY, USA) and P-value of < 0.05 was considered statistically significant. This study was registered at ClinicalTrials.gov, number NCT 01861223.

Results

Patient characteristics

Between April 2013 and October 2014, a total of 50 patients were enrolled in two stages of the study; 13 patients for phase Ib and 37 patients for phase II. Table 1 summarizes baseline patient characteristics. Median age was 55 years, 62% were female, and 98% had an ECOG performance status of 1. The majority of patients were never-smokers (60%) with adenocarcinoma (96%), and all patients had stage IV disease at screening. Seventy percent of patients have been previously treated with at least three chemotherapies. All patients have received prior erlotinib (68%) or gefitinib (32%) and 80% patients showed partial response to prior EGFR TKI. Of 48 patients with known EGFR mutation status prior to gefitinib or erlotinib therapy, exon 19 deletion was the most common, accounting for 48%, followed by L858R mutation at 30%. In 27 (54%) of the 50 patients, re-biopsy was performed at the time
of acquired resistance to gefitinib or erlotinib; 18 patients (67%) were T790M-positive and 9 patients (33%) were T790M-negative.

At the data cutoff for this report (May 5, 2015), 49 patients discontinued study treatment due to the following reasons: progressive disease (42 patients, 82%), adverse events (5 patients, 10%), or other reasons (2 patients, 4%). The median number of cycles was 4 (range, 1-19) and the median follow-up duration for all 50 patients was 10.1 months (range, 2.5-23.9 months).

Determination of MTD and safety assessment

In phase Ib, 1 of 3 patients who were treated with dose level I experienced DLT (grade 3 diarrhea), which prompted enrollment of 3 additional patients resulting in only one DLT of 6 patients. At dose level II, 2 of 6 patients developed DLTs (grade 3 diarrhea and grade 3 neutropenia), leading to MTD. Based on these results, RPIID was defined as 40mg of afatinib plus 100mg of nimotuzumab. In stage I, 3 of 11 (> 27%) patients showed treatment response, the study would proceed to stage II. In phase II stage, 37 patients were treated with this regimen.

Table 2 shows treatment related toxicity profiles which occurred in > 10% of total patients. There were no grade 4 or 5 toxicities. The most common adverse events of any grade for all patients included diarrhea (88%), mucositis (74%), rash (58%), anorexia (52%) and paronychia (46%). Among 44 patients treated with RPIID, 7 (16%) patients experienced grade 3 toxicities such as diarrhea (5%), rash (7%), acne (2%), scalp eruption (2%), fatigue (2%) and dyspnea (2%).

Treatment related adverse events led to dose reduction in 18 (36%) patients, including 6 (46%) of 13 in the phase Ib stage and 12 (32%) of 37 in the phase II stage. Three patients in phase Ib stage discontinued therapy due to grade 3 diarrhea. Two patients in phase II stage
withdrew from the study because of grade 2 skin rash and grade 3 diarrhea.

Antitumor activity

Of total 44 patient treated with RPIID, 43 patients were evaluable for tumor response (Table 3). The overall response rates were observed in 10 (23%) of 43 patients, all of which were PRs. DCR were noted in 36 (84%) of 43 patients including PR in 10 (23%) and SD in 26 (61%). Of 35 patients harboring activating EGFR mutation and treated with RPIID, 9 (26%) had a confirmed ORR; ORR was 30% for exon 19 deletion and 20% for L858R mutation (Supplementary Table S1). There was a trend toward improved ORR in patients with exon 19 deletion relative to L858R mutation. Median interval between initial EGFR TKI and afatinib plus nimotuzumab was 7 months (range, 0-30). There was a trend toward improved ORR with respect to the interval of EGFR TKI ‘holiday’, although comparisons between groups (≥ 7 months vs < 7 months) were not statistically significant (36% vs 10%, P = 0.069). When we compared the ORR according to the number of prior treatment regimens (< 3 vs ≥ 3), no significant differences were observed (P = 0.440). The maximum percent change in radiographic assessment of tumor target lesions is shown in Fig. 2. The PFS and OS for 44 patients who received the RPIID dose are shown in Fig.3. The median duration of response was 4.3 months (range, 0.7-16.2 months) and the median PFS and OS were 4.0 months (95% CI, 2.3-5.7 months) and 11.7 months (95% CI, 9.4-14.0 months), respectively (Fig. 3).

Twenty-seven patients underwent re-biopsy after progression with gefitinib or erlotinib whose genomic aberrations were available for subgroup analysis. Patients were categorized according to the T790M mutation status (T790M-positive; n = 18 vs T790M-negative; n = 9). ORR and median PFS for this subgroup patients were as follows; ORR, 18% T790M-positive vs 33% T790M-negative, P = 0.628; median PFS, 3.7 months T790M-positive vs 2.8 months...
Discussion

The development of acquired resistance to EGFR TKIs have galvanized research efforts in identifying effective alternative treatment strategies for EGFR-mutant NSCLC patients. The high frequency of EGFR T790M mutation in acquired resistance signified the critical role of continued signaling through EGFR in survival of EGFR-mutant lung cancer (31, 32). Dual EGFR blockade using an EGFR TKI coupled with an antibody to EGFR has been explored as a promising approach for acquired resistance (13, 14, 19, 20). To our knowledge, this is the first prospective study of combination therapy with afatinib plus nimotuzumab in patients with acquired resistance to gefitinib or erlotinib.

Toxicity is a critical aspect of treating patients with dual anti-EGFR inhibition given the potential overlapping side effects, especially skin rash and diarrhea. In this study, the RPIID was determined as afatinib 40mg daily and nimotuzumab 100mg weekly. For patients who were treated with RPIID, grade 3 toxicities were found in 16% of patients with low incidences of skin rash and diarrhea (7% and 5%, respectively), which were more favorable than the previous study of afatinib plus cetuximab combination where grade 3 or 4 treatment-related adverse events were noted in 46% of patients with the most common grade 3 events of rash (20%) and diarrhea (6%) (20). According the toxicity profiles of afatinib (40mg per day), rash and diarrhea occurred in 76% of patients, with 4% grade 3 rash and 7% grade 3 diarrhea (33). Based on these data, nimotuzumab seems to have no additive toxicities such as skin rash and diarrhea when combined with afatinib. Prior data also reported that severe adverse events such as skin rash or diarrhea commonly associated with cetuximab and panitumumab remain
extremely rare with nimotuzumab in other solid tumors (34-36). Fewer side effects of nimotuzumab compared with other anti-EGFR mAbs may be attributed to unique binding affinity in the range of 10^{-8} M - 10^{-9} M to maximize tumor cell targeting while minimizing normal cell toxicity (37, 38). Also, recent experimental observations suggest that in contrast to other anti-EGFR antibodies, bivalent binding property of nimotuzumab contributes to the differences in toxicity profiles (38, 39). We noted that one patient experienced DLT with grade 3 neutropenia in cycle 1 at dose level II without any symptom. Based on the toxicity profile of nimotuzumab, prior systemic chemotherapy and radiotherapy to pelvic bone could have influenced on bone marrow capacity of the patient.

Although afatinib as single agent demonstrated high anti-tumor activity in preclinical model in both sensitizing EGFR mutants and resistant cells harboring T790M, the ORR with afatinib alone for NSCLC patients who progressed during prior treatment with gefitinib or erlotinib was disappointing with only 7-8% (18, 40). However, a novel treatment strategy with dual blockade of EGFR with afatinib and cetuximab has increased the response rate to 29% with an improvement in median PFS of 4.7 months (20). In the current study evaluating afatinib 40mg plus nimotuzumab 100mg, 23% achieved partial response and 84% showed disease control with median duration of response of 4.3 months. Collectively, these results provide additional evidence that dual blockade of EGFR are more effective than afatinib alone in NSCLC patients who progressed on first generation EGFR TKI. Furthermore, the survival benefit of this combination (4.0 months for median PFS and 11.7 months for median OS) is particularly meaningful given that the majority of patients were heavily pretreated. Although treatment with higher dose level (afatinib 40 mg plus nimotuzumab 200 mg) seems to have higher response rates, the clinical relevance is limited because of the small sample size. To increase the clinical benefit of this regimen, the more defined patient selection strategy should be investigated in the future.
It is noteworthy that subgroup analysis according to the EGFR mutation subtype showed numerically higher response in patients with exon 19 deletion. In the current study, patients with longer interval duration between prior EGFR TKI and afatinib plus nimotuzumab showed better ORR, although no statistically significant finding (36% vs 10%, \(P = 0.069 \)). Several retrospective studies regarding gefitinib re-administration have shown that a prolonged gefitinib-free interval was a predictive factor for a favorable clinical result (41, 42), suggesting that cytotoxic chemotherapy modify the heterogeneous tissue distribution in sensitive or resistant cells.

It still remains unknown whether dual blockade of EGFR is effective irrespective of T790M mutation status in patients with acquired resistance to gefitinib or erlotinib. According to the study by Janjigian et al., there was no significant difference in ORR between patients harboring T790M-positive and T790M-negative tumors (32% vs 25%; \(P = 0.341 \)) (20). In the current study, although the response rate was numerically higher in T790M-negative patients, it should be cautious to make conclusion due to limitation of study population. However, given that no alternative therapies exist for EGFR TKI resistance patients without T790M mutation, this combination therapy may be a viable strategy. Recently, 3rd generation EGFR TKI, AZD9291 and rociletinib demonstrated robust and durable response in both T790M positive and negative patients (43, 44). Moreover, Meador et al. reported that secondary resistance to afatinib plus cetuximab can be overcome by AZD9291 (45). However, given the heterogeneity of T790M negative EGFR TKI resistant tumor, dual targeting of EGFR with afatinib plus nimotuzumab still has therapeutic option for patients who developed resistance to EGFR TKIs.

In conclusion, combination therapy of afatinib and nimotuzumab was effective and tolerable in advanced NSCLC patients with acquired resistance to gefitinib or erlotinib. A large trial assessing clinical impact of afatinib plus nimotuzumab combination in conjunction
with accurate molecular profiling of genomic aberrations is warranted to identify and guide optimal treatment strategy in EGFR mutant patients resistant to gefitinib or erlotinib.

Author’s Contributions

Conception and design: Jong-Mu Sun, Keunchil Park, Myung-Ju Ahn

Provision of study materials or patients: Jong-Mu Sun, Se-Hoon Lee, Jin Seok Ahn, Keunchil Park, Myung-Ju Ahn

Collection and assembly of data: Ji Yun Lee, Sung Hee Lim, Hae Su Kim, Kwai Han Yoo, Ki Sun Jung, Haa-Na Song, Bo Mi Ku, Jiae Koh, Yeon-Hee Bae

Data analysis and interpretation: All authors

Manuscript writing: All authors

Final approval of manuscript: All authors
References

37. Boland WK, Bebb G. Nimotuzumab: a novel anti-EGFR monoclonal antibody that

Optimizing the sequence of anti-EGFR-targeted therapy in EGFR-mutant lung cancer.

Mol Cancer Ther 2015;14:542-52.
Figure legends

Fig 1. Flow diagram of study design and patient enrollment

Fig 2. Waterfall plot showing maximum percentage change from baseline in size of tumors among 48 response-evaluable patients

Fig 3. Kaplan-Meier Curves for progression-free survival (a) and overall survival (b)
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>variables</th>
<th>All Patients (n = 50)</th>
<th>Phase Ib (n = 13)</th>
<th>Phase II (n = 37)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. %</td>
<td>No. %</td>
<td>No. %</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>55</td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td>Range</td>
<td>31-75</td>
<td>41-65</td>
<td>31-75</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19 (38)</td>
<td>4 (31)</td>
<td>15 (40)</td>
</tr>
<tr>
<td>Female</td>
<td>31 (62)</td>
<td>9 (69)</td>
<td>22 (60)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1 (2)</td>
<td>0 (0)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>1</td>
<td>49 (98)</td>
<td>13 (100)</td>
<td>36 (97)</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>30 (60)</td>
<td>9 (69)</td>
<td>21 (57)</td>
</tr>
<tr>
<td>Former</td>
<td>6 (12)</td>
<td>1 (8)</td>
<td>5 (13)</td>
</tr>
<tr>
<td>Current</td>
<td>14 (28)</td>
<td>3 (23)</td>
<td>11 (30)</td>
</tr>
<tr>
<td>Pathology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>48 (96)</td>
<td>13 (100)</td>
<td>35 (95)</td>
</tr>
<tr>
<td>Adenosquamous</td>
<td>2 (4)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>No. of previous chemotherapy regimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>15 (30)</td>
<td>3 (23)</td>
<td>12 (32)</td>
</tr>
<tr>
<td>≥ 3</td>
<td>35 (70)</td>
<td>10 (77)</td>
<td>25 (68)</td>
</tr>
<tr>
<td>EGFR mutation*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 19 deletion</td>
<td>24 (48)</td>
<td>8 (62)</td>
<td>16 (43)</td>
</tr>
<tr>
<td>L858R</td>
<td>15 (30)</td>
<td>2 (15)</td>
<td>13 (35)</td>
</tr>
<tr>
<td>Complex mutation exon 19</td>
<td>2 (4)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Wild-type</td>
<td>7 (14)</td>
<td>3 (23)</td>
<td>4 (11)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (4)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Previous EGFR TKIs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gefitinib</td>
<td>34 (68)</td>
<td>10 (77)</td>
<td>24 (65)</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>16 (32)</td>
<td>3 (23)</td>
<td>13 (35)</td>
</tr>
<tr>
<td>Best response to previous EGFR TKI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td>40 (80)</td>
<td>9 (69)</td>
<td>31 (84)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>8 (16)</td>
<td>4 (31)</td>
<td>4 (11)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>2 (4)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

Abbreviation: ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR TKIs, epidermal growth factor receptor tyrosine kinase inhibitors
*EGFR mutation status before previous gefitinib or erlotinib therapy
<table>
<thead>
<tr>
<th>Adverse event</th>
<th>All patients (n = 50)</th>
<th>A 40mg + N 100mg (n = 44)</th>
<th>A 40mg + N 200mg (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3/4</td>
<td>Any Grade</td>
<td>Grade 3/4</td>
</tr>
<tr>
<td>Anorexia</td>
<td>0</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4</td>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td>Mucositis</td>
<td>1</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>Paronychia</td>
<td>0</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Rash</td>
<td>3</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>Acne</td>
<td>1</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Scalp eruption</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Vomiting</td>
<td>0</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General weakness</td>
<td>0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Dry skin</td>
<td>0</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Pruritus</td>
<td>0</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Headache</td>
<td>0</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Cough</td>
<td>0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Common cold</td>
<td>0</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Abbreviations: A, afatinib; N, nimotuzumab
Table 3. Best response to treatment among response-evaluable patients, by study phase

<table>
<thead>
<tr>
<th>Response</th>
<th>All Patients (n = 48)*</th>
<th>By study phase</th>
<th>Patients treated with A 40mg/d + N 100mg/w (n = 43)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>DCR (CR, PR, or SD)</td>
<td>40</td>
<td>83</td>
<td>10</td>
</tr>
<tr>
<td>ORR (CR or PR)</td>
<td>13</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>CR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PR</td>
<td>13</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>SD</td>
<td>27</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>PD</td>
<td>8</td>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: A, afatinib; N, nimotuzumab; DCR, disease control rate; CR, complete response; PR, partial response; SD, stable disease; ORR, overall response rate; PD, progressive disease

*Two patients with phase Ib were excluded from the efficacy evaluation due to having no post-baseline disease assessments.
† Of total 44 patient treated with RPIID, 43 patients were evaluable for tumor response; one patient was excluded because of no post-baseline disease assessments.
Fig. 1

Enroll 3 pts
(A 40 mg + N 100 mg)

0/3 DLTs
Escalate to next dose
(A 40 mg + N 200 mg)

1/3 DLTs
Enroll 3 additional pts
(A 40 mg + N 100 mg)

≥ 2/3 DLTs
Deescalate to dose
A 30 mg + N 100 mg

1/6 DLTs
Escalate to next dose
(A 40 mg + N 200 mg)

≥ 2/6 DLTs
Terminate
Previous dose is MTD

A, afatinib; N, nimotuzumab; DLTs, dose-limiting toxicities; pts, patients
Fig. 3

Overall survival
11.7 months (95% CI, 9.4-14.0)

Progression-free survival
4.0 months (95% CI, 2.3-5.7)

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months (months)</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>44</td>
<td>38</td>
<td>14</td>
</tr>
</tbody>
</table>
A Phase Ib/II Study of Afatinib in Combination with Nimotuzumab in Non-Small Cell Lung Cancer Patients with Acquired Resistance to Gefitinib or Erlotinib

Ji Yun Lee, Jong-Mu Sun, Sung Hee Lim, et al.

Clin Cancer Res Published OnlineFirst December 14, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-15-1653

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2015/12/12/1078-0432.CCR-15-1653.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.