Right-Sizing Adjuvant and Neoadjuvant Clinical Trials in Breast Cancer

Donald A. Berry

I describe a simple and intuitive method for finding sample size for clinical trials in primary breast cancer based on neoadjuvant trial results and using the FDA’s patient-level meta-analysis. Then I explain a problem with this method and how the problem can be remedied.

In this issue of Clinical Cancer Research, Hatzis and colleagues (1) propose a method for designing clinical trials in early breast cancer with a survival endpoint based on an assumed benefit in pathologic complete response (pCR) rate from a neoadjuvant trial. In a similar vein in a recent article (2), I indicated how improvements in pCR rate from the FDA’s meta-analysis of neoadjuvant trials in breast cancer (3) should be used to design such trials. I will demonstrate the latter method here by addressing the following statement in the authors’ abstract: ‘For example, if the pCR rates are 30% and 60% (OR = 3.5) and the 10-year RFS of the control arm is 0.74, the trial would require 3,550 patients per arm, whereas if the RFS is 0.54, the trial would only require 425 patients per arm to detect significant survival benefit.’ In the process, I will address considerations that pharmaceutical companies and cancer clinical trials consortia should consider when designing adjuvant and neoadjuvant trials that have survival endpoints.

I will neither emulate nor critique the Hatzis analyses but instead I will say how I design trials that have a survival endpoint such as event-free survival (EFS) based on evidence that the experimental therapy improves on the pCR rate of control. The method is intuitive and easy to develop and use. For example, in comparison with Hatzis and colleagues (1), there are no simulations or ORs.

ORs comparing pCR rates are not relevant for inferring the effect of pCR on survival endpoints. Converting an additional 5% of patients to pCR implies an OR of 2.11 if the change is from 5% to 10% but only 1.23 if the change is from 40% to 45%. Moreover, to have a pCR OR of 2.11 in the latter setting would require an improvement in pCR from 40% to 58.5%. So the same OR in the latter cases affects 3.7 times as many women.

The relevant measure for predicting a survival benefit from pCR improvement is the proportion of patients who move from the no pCR survival curve to the pCR curve, and that is simply the delta in pCR rates (2). As the methodology is easy to apply to any biomarker subtypes using the FDA patient-level meta-analysis, I will show the results for both HER2+ and triple-negative breast cancer (TNBC).

Figure 1 shows the expected EFS HR depending on pCR improvement for these two biomarker subtypes. These curves assume exponential EFS distributions for patients experiencing and not experiencing pCR (for TNBC this assumption does not fit the Kaplan–Meier curves very well but it has little impact on quantitative conclusions and no impact on my overall conclusions). The blue dots in Fig. 1 show the expected HRs 0.759 and 0.676, respectively, at the authors’ assumed delta in pCR of 0.30. So, for example, if the true improvement in pCR rate for TNBC is 0.30 then the most likely value of EFS HR is 0.676.

Table 1 shows the resulting sample sizes for the two assumptions regarding RFS (EFS) considered in the abstract by Hatzis and colleagues (ref. 1; where “med” means median assuming exponential time to event). Calculations in Table 1 are based on the standard method of George and Desu (4) assuming 90% power, two-sided type I error rate 0.05, 2 years for accruing patients and 2 versus 5 years of additional follow-up (FU). I chose these quantities as characterizing modern trials more generally and I have not attempted to make assumptions analogous to those of Hatzis and colleagues (1). The fact that our answers differ is not surprising. What is surprising is that Hatzis and colleagues conclude a sample size increase when assuming a control 10-year RFS of 0.74 versus 0.54 of 3550/425 = 8.35 times, whereas this ratio is approximately 2 for all scenarios considered in Table 1.

As pointed out by Berry and Hudis (2), there are two major problems when designing trials using either Table 1 or the method by Hatzis and colleagues (1). One is pervasive in clinical research and helps explain why phase III trials fail much more often than their statistical power suggests. The problem is illustrated in Fig. 1 by comparing the histogram of phase II results with the power curve for the planned study. The observed delta for pCR was statistically significant 0.30 but the true delta is uncertain. This uncertainty is usually communicated by a confidence interval but the histogram in the figure is more informative in the sense that it shows regions of higher versus lower likelihood. If the true delta is greater than 0.30 then the trial will be overpowered and if it is less than 0.30 the trial will be underpowered, with the latter decreasing much more dramatically than the former is increasing. The average power (called “predictive power”) is the probability the
trial will be positive given the prior data and its associated uncertainty. It is less than the nominal 90% and in the example of Fig. 1, the predictive power is only 75%.

The other major problem with the approach is that the relationship between pCR and EFS may be different from that in the FDA meta-analysis (3) and the data from Hatzis and colleagues (1). Drugs’ mechanisms of action differ, with some drugs substantially decreasing measurable tumor burden but they have little effect on slowing the disease process. The opposite scenario is also possible. Indeed, these same authors (5) have emphasized that pCR is a dichotomous partitioning of tumor burden at surgery which reduces the information in assessing drug effect. Better to focus on degree of response. A therapy might improve the rate of “partial response,” for example, which can be assessed using Residual Cancer Burden class 1 (5), and converting a patient to RCB1 may be associated with prolonging EFS quite apart from the positive consequences of experiencing a pCR.

Berry and Hudis (2) offer a solution to both problems: adaptive trial design, including re-estimating sample size based on the accruing trial results for pCR rates and also on the observed relationship between pCR and EFS in the context of the investigational therapy in the trial. For example, Fig. 1 shows that a sample size with 90% power when delta is 0.30 has only about 50% power when delta is 0.20. If interim data are suggesting that the true delta is only about 0.20 then the sample size can be increased, depending on what the available evidence about the relationships between pCR and EFS. On the other hand, if the true delta seems closer to 0.40 then the sample size can be decreased (both of these possibilities affect the type I error rate which can be easily adjusted and controlled), and if the true delta seems to be less than 0.10 then the trial can be stopped for futility rather than increasing the sample size to an impossibly large number.

In summary, I propose using the FDA meta-analysis (3) for designing neoadjuvant breast cancer clinical trials that have both pCR and EFS endpoints. It applies as well for adjuvant trials based on information about pCR from phase II neoadjuvant trials. My approach allows for calculating statistical power as usual by assuming particular values of pCR rates for the experimental and

Table 1. EFS trial sample size derived from FDA meta-analysis

<table>
<thead>
<tr>
<th>Control 10-year RFS (med)</th>
<th>Subtype</th>
<th>Annual hazards</th>
<th>N per arm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Experimental</td>
<td>2-year follow-up</td>
</tr>
<tr>
<td>0.74 (23.0 years)</td>
<td>HER2⁺</td>
<td>0.0301</td>
<td>0.0229</td>
</tr>
<tr>
<td>0.0301</td>
<td>TNBC</td>
<td>0.0205</td>
<td>0.0100</td>
</tr>
<tr>
<td>0.54 (11.3 years)</td>
<td>HER2⁺</td>
<td>0.0616</td>
<td>0.0468</td>
</tr>
<tr>
<td>0.0616</td>
<td>TNBC</td>
<td>0.0416</td>
<td>0.0205</td>
</tr>
</tbody>
</table>

Figure 1.
Estimated relationship between EFS HR and improvement in pCR rate for HER2⁺ and TNBC based on FDA meta-analysis shown in blue (3). The dots at delta = 0.30 occur at EFS HR 0.759 and 0.676, respectively. The respective values 0.39 and 0.24 at delta 1.0 are from the FDA meta-analysis and are the HRs for comparing EFS for patients with pCRs with EFS for patients with other than pCRs. The red histogram shows the uncertainty in the true delta based on a phase II clinical trial with observed delta 0.30 that is statistically significant with two-sided \(P \) value 0.05. The black curve shows power as it depends on the true delta when the phase III trial has 90% power to detect a difference of 90%. The reason this curve appears on this figure is described in the text. Adapted from Berry and Hudis (2). Copyright 2015 American Medical Association. All rights reserved.
control arms. It also enables finding the probability that the trial will be successful allowing for the variability in treatment-specific pCR rates from previous neoadjuvant clinical trials. This approach, and every standard approach for determining sample size, is fraught with such uncertainty as to discourage investigators from taking a neoadjuvant approach. The uncertainty due to having to make questionable assumptions about treatment-specific pCR rates and treatment-specific relationships between pCR and EFS can be mitigated using an adaptive design in which the sample size is re-estimated periodically based on data accruing in the trial.

Disclosure of Potential Conflicts of Interest

D.A. Berry is an employee of, has ownership interest in, and is a consultant/advisory board member for Berry Consultants. No other potential conflicts of interest were disclosed.

Grant Support

D.A. Berry was supported by the NIH through a Cancer Center Support Grant under award number P30CA016672 and by the NIH under award number U01CA187945.

Received September 3, 2015; revised October 4, 2015; accepted October 7, 2015; published OnlineFirst October 28, 2015.

References

Clinical Cancer Research

Right-Sizing Adjuvant and Neoadjuvant Clinical Trials in Breast Cancer

Donald A. Berry

Clin Cancer Res Published OnlineFirst October 28, 2015.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-15-1903</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>