Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy

Maurizio Scaltriti¹,²†, Moshe Elkabets³, and José Baselga¹,⁴†

¹Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065
²Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065
³The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel.
⁴Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065

Note: M. Scaltriti and J. Baselga share senior authorship.

Running title: AXL Expression and Acquisition of Drug Resistance

†Corresponding Authors:

José Baselga, MD, PhD
Department of Medicine
Memorial Sloan Kettering Cancer Center 1275 York Avenue - Suite M2015
New York, NY, 10065
Phone: 212 639-8000
Fax: 212 794-3182
E-mail: baselgaj@mskcc.org

Maurizio Scaltriti, Ph.D.
Memorial Sloan Kettering Cancer Center
Human Oncology & Pathogenesis Program (HOPP)
Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
Abstract

AXL is a tyrosine kinase membrane receptor that signals via the phosphatidylinositol-3-kinases (PI3K), mitogen-activated protein kinases (MAPK) and protein kinase C (PKC), among other pathways. AXL has oncogenic potential and interacts with other membrane receptors, depending on their relative abundance and availability. Increased expression of AXL in cancer is often the result of pharmacological selective pressure to a number of chemo- and targeted therapies and acts as a mechanism of acquired drug resistance. This resistance phenotype, frequently accompanied by epithelial-to-mesenchymal transition, can be reversed by AXL inhibition. In tumors with high levels of epidermal growth factor receptor (EGFR), including lung, head and neck and triple negative breast cancer, AXL dimerizes with this receptor and initiates signaling that circumvent the antitumor effects of anti-EGFR therapies. Likewise AXL overexpression and dimerization with EGFR can overcome PI3K inhibition by activating the phospholipase C-gamma (PLCγ)-PKC cascade that in turn sustains mammalian target of rapamycin complex 1 (mTORC1) activity. The causative role of AXL in inducing resistance drug resistance is underscored by the fact that suppression of AXL restores sensitivity to these agents. Hence, these observations indicate that AXL is selectively expressed in tumor cells refractory to therapy and that co-targeting AXL in this setting would potentially overcome drug resistance. The use of AXL inhibitors should be considered in the clinic.
Background

The gene AXL, a name derived from the Greek word anexelekto, ("uncontrolled"), was first isolated from chronic myelogenous leukemia and its overexpression was found to induce fibroblast transformation with simultaneous appearance of a 140 kDa tyrosine-phosphorylated protein (1). AXL is also known as adhesion-related kinase (Ark) (2), Tyro7 (3) or unknown function (Ufo) (4). AXL belongs to the TAM family of receptor tyrosine kinases (RTKs), which also includes Tyro-3 and MERTK (Mer). TAM receptors have pleiotropic functions in many biological processes such as coagulation, immune response and cancer progression (5). They share among their members 16-31% of their extracellular amino acid sequence and 54–59% of their intracellular domain (6). Autophosphorylation of the intracellular tyrosine kinase domain of AXL occurs following receptor activation and is mediated either by ligand-dependent or ligand-independent receptor dimerization. Growth arrest-specific protein 6 (Gas6) has been identified as the only ligand that binds the extracellular domain of AXL (7-9). Receptor homo-dimerization or hetero-dimerization with other RTKs such as EGFR (10) results in rapid phosphorylation of AXL and activation of a number of downstream effectors (see “AXL signaling pathway”).

AXL is ubiquitously expressed in a wide variety of tissues such as brain (hippocampus and cerebellum), heart, liver and bone marrow (monocytes and macrophages) (reviewed in (5, 11)). Increased expression of AXL has been reported in several human cancers including colon, esophageal, thyroid, breast, lung, liver, and astrocytoma-glioblastoma (reviewed in (12, 13)). The AXL receptor regulates fundamental cellular processes including proliferation, survival and migration (13). Moreover, AXL was shown to play a pivotal role in enhancing motility and invasiveness of breast (14) and lung cancer cells (15).

AXL signaling pathway

AXL activation initiates signaling of a number of downstream pathways such as PI3K, MAPK and PKC (16) (Figure 1). The phosphorylation of three specific tyrosine residues (Tyr) within the
intracellular domain of AXL promotes the recruitment of p85 (the regulatory subunit of PI3K), PLCγ (the initiator of the PKC cascade) and growth factor receptor-bound protein 2 (Grb2, an adaptor molecule that allows the activation of the MAPK pathway (17)). While Grb2 binding seems to be specific for Tyr821, p85 can interact with both Tyr821 and Tyr779 whereas PLCγ can anchor to both Tyr821 and Tyr886 (17) (Figure 1).

Both ligand-dependent and –independent activation of AXL initiates downstream signaling in several cancer types including prostate (18), ovarian (19), lung (mesothelioma) (20) and head and neck (21). In turn, these signaling cascades can activate transcription factors regulating cell proliferation and survival. One example is the AKT-mediated destabilization of the IkBα-NF-kB complex resulting in nuclear shuttling of NF-kB (18) and consequent transcription of antiapoptotic proteins such as cyclin D1, survivin and focal adhesion kinase (22).

The activation of AXL is negatively regulated by a soluble form of the receptor that directly interacts with Gas6 and reduces ligand availability (23). Mechanistically, soluble AXL acts as a decoy receptor blocking Gas6 binding to membrane-bound TAM receptors and thus preventing AXL activation. A positive correlation between the levels of soluble AXL and membrane-bound AXL was observed in hepatocellular carcinoma (24), suggesting that detection of soluble AXL could potentially be used as a biomarker to monitor increase AXL expression and emergence of drug resistance overtime. In addition, C1 domain-containing phosphatase and TENsin homologue (C1-TEN), a focal adhesion molecule with phosphatase properties and highly similar to phosphatase and tensin homolog (PTEN), has been described to interact directly with AXL and negatively regulate the downstream activation of AKT (25, 26). AXL activation and downstream signaling propagation results in enhanced cell motility and invasion by increasing filopodia formation and cell-to-cell interactions (27). This phenotype is mechanistically explained, at least in part, by the AXL-mediated phosphorylation of engulfment and cell motility (Elmo) scaffold protein that in turn promotes Rac-mediated cytoskeleton changes resulting in
increased cancer cells migration (28). Accordingly, this is reversed by both AXL and Rac inhibition (29).

AXL expression regulation

While the regulation of AXL expression remains to be fully elucidated, it is not mediated by genomic amplification (30, 31). Likewise, no hotspot activating mutations have been reported (30, 31). Overexpression of AXL may occur via alternative mechanisms including activation of transcription factors, regulation of microRNAs (miRs) and posttranslational modifications. Specifically, transcriptional activation mediated by Fos/cJun/AP1 (16, 32), Sp1/Sp3 (33) and YAP1 (34) transcription factors results in increased AXL mRNA expression. AXL is also a direct transcriptional target of the Fos family member transcription factor Fos-related antigen 1 (Fra-1). Fra-1 was described to bind to four different regulatory regions of AXL promoting gene expression (35). This was also confirmed by exogenous expression of Fra-1, which results in AXL upregulation (35). In imatinib-resistant CML cells, the transcription factor activator protein 1 (AP1) seems to be required for AXL overexpression, as the promoter activity of AXL is almost completely abolished when carrying a mutation on its AP1 binding site (16). AXL expression may also be regulated by miR-34a and miR-199a/b that target the 3′-UTR of the AXL gene (36-38). In non-small cell lung, breast and colorectal cancers, for example, high levels of AXL can result from low expression of these miRs, which are suppressed by promoter methylation (36). AXL protein levels can also depend from its stability. Receptor ubiquitination mediated by the Casitas B-lineage lymphoma (Cbl) E3 ubiquitin ligases can regulate the abundance of AXL in several cells (39, 40). Likewise, increased AXL half-life by impaired degradation of the receptor can occur in lung cancer cell lines, resulting in net increase of AXL levels (41).

Clinical-Translational Advances

Targeted therapy frequently results in rapid increase of RTKs expression that can compensate
for the acute inhibition of a specific signaling pathway. In breast cancer, for example, HER3 is often overexpressed as a result of PI3K/AKT inhibition (42-44), whereas increased expression and activity of EGFR plays a pivotal role in limiting the efficacy of BRAF inhibition in colon cancer (45, 46). These occurrences do not require genomic amplification, are versatile (not specific for a tumor type or a treatment) and inevitably result in activation of downstream effectors that can oppose the pharmacological pressure. The net result is either activation of parallel signaling or re-activation of the suppressed pathway, both of them overcoming the pharmacological pressure.

Increased AXL expression has been correlated with resistance to both antimitotic drugs and targeted agents. In AML, AXL was the only RTK overexpressed in cells from four patients that progressed to chemotherapy. Consistently, cell lines intrinsically resistant to chemotherapy express higher levels of AXL and chemotherapy exposure is sufficient to induce the expression of AXL (47). A similar effect is observed in NSCLC cell lines with acquired resistance to cisplatin in vitro. Refractoriness to cisplatin coincided with induction of AXL expression, transcriptional changes compatible with epithelial-to-mesenchymal transition (EMT) and partial resistance to the EGFR kinase inhibitor gefitinib (48). EMT is a conserved trans-differentiation process that many tumor cell types undergo to during cancer evolution (49). It is caused by a complex transcription rewiring that result in acquisition of mesenchymal properties and non-specific drug resistance. A recent report confirmed the association between induction of EMT and increased AXL expression, but concluded that EMT-associated drug resistance is independent of AXL function (50). Nonetheless, these data indicate that AXL inhibition sensitizes mesenchymal cells to antimitotic agents such as docetaxel or aurora kinase and polo-like kinase 1 (PLK1) inhibitors both in vitro and in vivo. This is in contrast with another report showing that overexpression of AXL is sufficient to induce directly EMT in breast cancer cells and that AXL suppression can reverse this phenotype (51). Overall, there is consensus in ascribing to AXL a central role in leading to transcriptional changes related to EMT.
In terms of resistance to receptor tyrosine kinase inhibitor, although AXL can also interact with HER2 (52) and HER3 (53), EGFR seems to be the strongest dimerization partner of AXL in several tumor types. AXL interacts and dimerizes with EGFR in lung (54), triple negative breast cancer (TNBC)(10) and head and neck squamous cell carcinomas (HNSCC)(21, 32). In accordance, overexpression of AXL has been shown to be sufficient to limit the sensitivity to anti-EGFR therapy in several models, both in vitro and in vivo (10, 32, 38, 55, 56). In particular, AXL overexpression and activation, accompanied by EMT-associated transcriptional changes, was observed in EGFR-mutant lung cancer xenografts that acquired partial resistance to the EGFR kinase inhibitor erlotinib in vivo (54). The causative role of AXL in inducing this phenotype was demonstrated by the facts that exogenous expression of AXL was sufficient to induce partial resistance to erlotinib in parental erlotinib-sensitive cells and that AXL inhibition restored erlotinib sensitivity in the resistant xenografts. In head and neck cancer cells, overexpression of AXL and its dimerization with EGFR can maintain EGFR activation and signaling even in the presence of the EGFR blocking antibody cetuximab (32). In these cells, AXL overexpression and dimerization with EGFR also results in acquired resistance to α isoform-specific PI3K inhibition, both in vitro and in animal models (21). In this case the mechanism of resistance involves the engagement of a parallel signaling cascade (PLCγ-PKC) that compensates PI3K/AKT inhibition via downstream parallel mTORC1 activation.

As mentioned, AXL can interact also with HER2 in HER2-positive breast cancer cells. In this context, AXL-HER3 dimerization bypasses HER2 signaling inhibition and provided the rationale to combine lapatinib, a small molecule HER2 kinase inhibitor, with a AXL kinase inhibitor (53). Another plausible combinatorial strategy is the simultaneous suppression of AXL and the MAPK kinase pathway in melanoma. In this case, AXL suppression seems to be important in cell lines/human tumors with low levels of Microphthalmia-associated transcription factor (MITF) and high levels of AXL, a cell state associated with acquired resistance to MAPK pathway inhibition (57, 58). These findings support the clinical development of AXL inhibitors in cancer in
combination with targeted agents (EGFR, HER2, PI3K inhibitors) at the time of acquired resistance and high AXL levels. Similarly, AXL inhibitors could be tested upfront if AXL overexpression is detected earlier in the course of the disease. In Table 1 we list the AXL inhibitors currently being developed both in the laboratory in animal models and in the clinic. In summary, the available data suggest that overexpression of AXL may be restricted to cells that are, or more frequently, become refractory to either chemo or targeted therapy. Its suppression may revert the drug resistant phenotype, either by reversing EMT or blunting the activation of compensatory pathway that limit therapy effectiveness.

Grant Support
This work was funded by the Cycle for Survival (to M. Scaltriti and J. Baselga).

Acknowledgments
Given the space limitations of the review, the authors apologize for their inability to cite everyone who has contributed to this field of inquiry.

References

21. Elkabets M, Pazarentzos E, Juric D, Sheng Q, Pelossof RA, Brook S, et al. AXL mediates resistance to PI3Kalpha inhibition by activating the EGFR/PKC/mTOR axis in

Table 1. Anti-AXL agents currently in preclinical or clinical development

<table>
<thead>
<tr>
<th>Company</th>
<th>Compound</th>
<th>Target(s)</th>
<th>Indication</th>
<th>Clinical status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servier (Neuilly-sur-Seine, France)</td>
<td>S49076 (kinase inhibitor)</td>
<td>MET, AXL, FGFR1/2/3</td>
<td>Advanced solid tumors</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET, AXL, and members of the VEGFR, PDGFR, DDR2, TRK and Eph families</td>
<td></td>
<td>2013-003079-37</td>
</tr>
<tr>
<td>Mirati Therapeutics Inc. (San Diego, CA)</td>
<td>MGCD516 (kinase inhibitor)</td>
<td>MET/AXL</td>
<td>Advanced solid tumors</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET/AXL</td>
<td>Advanced Malignancies</td>
<td>NCT02219711</td>
</tr>
<tr>
<td>Mirati Therapeutics Inc. (San Diego, CA)</td>
<td>MGCD265 (kinase inhibitor)</td>
<td>MET/AXL</td>
<td>Advanced Solid Tumors</td>
<td>Phase I</td>
</tr>
<tr>
<td>Betta Pharmaceuticals Co., Ltd (Beijing, China)</td>
<td>BPI-9016M (kinase inhibitor)</td>
<td>MET/AXL</td>
<td>Advanced Solid Tumors</td>
<td>NCT02478866</td>
</tr>
<tr>
<td>BerGenBio AS (Bergen, Norway)</td>
<td>BGB324 (R428) (kinase inhibitor)</td>
<td>AXL</td>
<td>Non-Small cell lung cancer and AML</td>
<td>Phase I/II</td>
</tr>
<tr>
<td>Tolero Pharmaceuticals (Salt Lake City, Utah) & Astex Pharmaceuticals (Dublin, CA)</td>
<td>TP-0903 (kinase inhibitor)</td>
<td>AXL</td>
<td>Pancreatic cancer, lung cancer</td>
<td>Preclinical</td>
</tr>
</tbody>
</table>

DDR, discoidin domain receptor; Eph, ephrin; FGFR, fibroblast growth factor receptor; PDGFR, platelet-derived growth factor receptor; TRK, tropomyosin receptor kinase; VEGFR, vascular endothelial growth factor receptor.
Figure 1. AXL overexpression and activation of downstream signaling pathways. AXL is overexpressed upon acquisition of therapy resistance and can induce epithelial-to-mesenchymal transition (EMT). It dimerizes with RTKs present in the membrane of tumor cells to initiate signaling cascades that ultimately lead increased cell motility and survival. Tyr, tyrosine residue.
Figure 1:

Acquired resistance/EMT

Gas6

Tyr779
Tyr821
Tyr866

AXL

Gas6

Ligands

Gas6

Ligands

Gas6

AXL

RAS

PLCγ

NF-κB

Cell proliferation

Cell survival

Motility

PI3K

PTEN

PIPK

PDK1

AKT

mTORC1

4EBPI

eIF-4E

Protein translation

Cell survival

EGFR

RTKs

AXL

4EBP1

mTORC1

eiF4ES6

p70S6K

S6

PI3K

PTEN

© 2016 American Association for Cancer Research

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Clinical Cancer Research

Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy

Maurizio Scaltriti, Moshe Elkabets and Jose Baselga

Clin Cancer Res Published OnlineFirst January 13, 2016.

Updated version
Access the most recent version of this article at:

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.