Micrometastasis Volume in Lymph Nodes Determines Disease Recurrence Rate of Stage II Colorectal Cancer: A Prospective Multicenter Trial

Hirofumi Yamamoto1,2, Kohei Murata3, Mutsumi Fukunaga4, Tadashi Ohnishi5, Shingo Noura6, Yasuhiro Miyake7, Takeshi Kato8, Masahisa Ohtsuka1, Yurika Nakamura1, Ichiro Takemasa1, Tsunekazu Mizushima1, Masatake Ikeda9, Masayuki Ohue10, Mitsugu Sekimoto9, Riichiro Nezu7, Nariaki Matsuura11, Morito Monden12, Yuichiro Doki1, and Masaki Mori1

Abstract

Purpose: We reported in a retrospective study that the presence of micrometastasis in lymph nodes, when assessed by carcinoembryonic antigen (CEA)-specific RT-PCR, is a significant prognostic factor in stage II colorectal cancer. The aim of this study was to clarify the clinical value of micrometastasis in a prospective multicenter trial.

Experimental Design: From November 2001 to December 2005, a total of 419 colorectal cancer cases were preoperatively registered at a central data center. Of them, 315 node-negative stage II colorectal cancer cases were enrolled. After RNA quality check, 304 colorectal cancer cases were analyzed for CEA mRNA in lymph nodes by both conventional RT-PCR (a band method) and quantitative RT-PCR. Long-term prognosis of the patients was determined by each method.

Results: A positive band for CEA mRNA was detected in 73 (24.0%) of 304 patients. Postoperative adjuvant chemotherapy was applied in 31 CEA band-positive cases with an oral 5-fluorouracil derivative HCFU (1-hexylcarbamoyl-5-fluorouracil) for 1 year, whereas chemotherapy was not administered to CEA band-negative group. Multivariate Cox regression analyses revealed that a high micrometastasis volume (high MMV, n = 95) was an independent poor prognostic factor for 5-year disease-free survival (DFS; P = 0.001) and 5-year overall survival (OS; P = 0.016).

Conclusions: This prospective clinical trial demonstrates that micrometastasis volume is a useful marker in identifying patients who are at high or low risk for recurrence of stage II colorectal cancer. Clin Cancer Res; 1–8. ©2016 AACR.

Introduction

Metastasis to regional lymph nodes is a reliable prognostic factor, adopted globally in the tumor–node–metastasis (TNM) staging system and used for clinical decision-making regarding postoperative adjuvant chemotherapy (1–3). Studies have shown the presence of occult cancer metastasis (also designated as micrometastasis) in the lymph nodes of colorectal cancer patients (4).

With IHC and molecular genetics methods, occult tumor cells in regional lymph nodes are detected in 25% to 50% of patients with node-negative colorectal cancer (5–18). Because up to 25% of patients with node-negative colorectal cancer ultimately die as a result of disease relapse, occult cancer metastasis has been suspected as a potential marker for systemic spread of tumor cells (1). However, the prognostic value of molecular tumor cell detection in patients with node-negative colorectal cancer has remained uncertain because of lack of evidence from prospective studies (5–18).

National Comprehensive Cancer Network (NCCN) clinical practice guidelines in oncology (version 4, 2013; ref. 19) recommends that detection of cancer cells by IHC or by the molecular detection of cancer cells in regional lymph nodes should be considered investigational because most of
After obtaining written informed consent on lymph node sampling and the subsequent clinical trial, lymph node samples were collected during surgery from 419 potential candidates who were preoperatively evaluated as stage II or stage III [International Union Against Cancer (UICC) TNM Classification - the 7th version; ref. 3] by examination of colonoscopy and CT scan, with performance status 0-2 (age, 20–75) from November 2001 to December 2005. After surgery, 315 patients diagnosed with pathologically node-negative stage II colorectal cancer were enrolled (Fig. 1). Experienced surgical staff from the 21 hospitals participated in this study. The study protocol was approved by each local institutional review board and this study was conducted in accordance with the Good Clinical Practice guidelines and the Declaration of Helsinki.

Lymph node sampling

Lymph nodes were collected, fixed in 10% buffered formalin, and embedded in paraffin for routine histopathologic examination. Mean lymph node sampling number inspected in each colorectal cancer case was 16.0. Of them, 5 pericolic nodes adjacent to the tumor were further examined for micrometastasis to detect initial cancer spread. For this purpose, a half of lymph node was collected using a RNase-free disposable lymph node sampling kit within 3 hours after surgical resection as concluded by our early work (22), being preserved in a tube containing RNA later (Ambion) at −20°C until RNA extraction (Supplementary Fig. S1).

RNA extraction and RNA quality of lymph node samples

Once pathologic tests indicated node-negative stage II colorectal cancer, lymph nodes were minced in TRIzol Reagent (Invitrogen). RNA extraction was performed as described previously (23, 24). For assessment of RNA quality, RNA was electrophoresed on a 0.8% agarose mini-gel, and ribosomal RNAs at 28S and 18S were visualized with ethidium bromide (Supplementary Fig. S1). Among 315 enrolled stage II colorectal cancer patients, lymph node samples from 11 patients showed degradation (3.5%; Fig. 1).

RT reaction

Reverse transcription (RT) was performed as described previously (22–24).

Conventional PCR. Conventional PCR and the primer sequences for PCR amplification of CEA and the housekeeping gene porphobilinogen deaminase (PBGD) were described previously (7, 22–23, 25–27). PCR products were electrophoresed on a 2% agarose gel and visualized with ethidium bromide (Supplementary Fig. S1). To ensure the reproducibility of PCR, the CEA control panel was produced using a serial dilution of cDNA from MKN45 and LoVo cells (22) and referenced to estimate the positivity of the CEA band in colorectal cancer cases (Supplementary Fig. S1).

Quantitative PCR assay with Light Cycler

Fluorescence PCR was performed using the Light Cycler (Roche Diagnostics), as described previously (22, 24, 26). The standard curves for quantification of CEA or PBGD mRNAs were drawn using 10-fold dilutions of cDNA from MKN45 cells (22, 26). We confirmed that CEA mRNA was reproducibly measurable in the range of a dilution of 1×10^{-4} to 1×10^{-1} (Supplementary Fig. S2).

Postoperative adjuvant chemotherapy

Postoperative adjuvant chemotherapy was randomly applied to the colorectal cancer patients with positive band for CEA mRNA using the oral 5-fluorouracil derivative HCFU (1-hexylcarbamoyl-5-fluorouracil; refs. 28, 29). Thus, if the patients agreed, they were randomly allocated to either chemotherapy (HCFU 300 mg/day for 1 year) or no treatment (Fig. 1). If they did not agree to allocation, we followed each patient’s desire and the study protocol was fixed that they were not excluded from the study. The protocol prohibited use of chemotherapy in CEA band-negative cases.

Follow-up of patients

Among 304 patients whose CEA levels in lymph nodes were determined, several patients were judged as not meeting criteria for the purpose of this study. These included protocol violation (applied chemotherapy in CEA band-negative case, n = 5), insufficient follow-up period (5 months; CEA band-positive...
Assessed for eligibility
LN sampling (n = 419)

Pathologic stage II, enrollment (n = 315)

Measurement of CEA mRNA (n = 304)

CEA band-positive (n = 73)

CEA band-negative (n = 231)

Randomized
28 chemotherapy : 27 no treatment

Not randomized
4 chemotherapy : 14 no treatment

Excluded RNA degradation (n = 11)

Excluded Protocol violence (n = 5)

* Excluded Insufficient follow-up (n = 1)

No treatment [n = 226]

Excluded Dead from other disease in 1 year (n = 2)

Analyzed for 5-year DFS and 5-year OS (n = 296)
Band-positive (n = 72)
Band-negative (n = 224)
High MMV (n = 95)
Low MMV (n = 201)

Figure 1.
Flow chart of patients. Lymph node (LN) samples were collected from 419 patients who were preoperatively diagnosed as stage II and III colorectal cancers and 315 pathologic stage II patients were enrolled in the study. After exclusion for RNA degradation (n = 11), 304 patients were determined for the presence of the CEA band and for their CEA mRNA value. Postoperative adjuvant chemotherapy (HCFU 300 mg/day for 1 year) was adopted in 32 CEA band-positive patients among whom 28 cases were randomly allocated to chemotherapy and 4 patients refused to be allocated and desired to receive chemotherapy. Among 41 cases with no treatment, 27 cases were allocated to no treatment and 14 cases desired no treatment. One patient lost to follow-up at 5 months (this patient was allocated to adjuvant chemotherapy by randomization) and 21 cases were randomly allocated to chemotherapy and 4 patients refused to be allocated and desired to receive chemotherapy. Among 32 cases with no treatment, 27 cases were allocated to no treatment and 14 cases desired no treatment. One patient lost to follow-up at 5 months (this patient was allocated to chemotherapy by randomization).

Case, n = 1), and early death from other disease (2 months and 10 months, respectively; CEA band-negative cases, n = 2). As a result, 296 colorectal cancer patients were analyzed for their disease recurrence and survival (Fig. 1). The patients were periodically monitored by physiologic examination, CT scan, chest x-ray, colonoscopy, and blood tests. The median follow-up period was 82.3 (53–133.2) months.

Clinical trials registry
This study was registered with University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR). Clinical trial information is referenced by UMIN C000000185.

Statistical analysis
Statistical analysis was performed using the StatView J-5.0 program (Abacus Concepts, Inc). The Kaplan–Meier method was used to estimate tumor recurrence and cancer-specific survival, and the log-rank test was used to examine statistical significance. A Cox proportional hazards model was used to assess the risk ratio under simultaneous contribution from several covariates. The associations between the discrete variables were assessed using the χ² test. Mean values were compared using the Mann–Whitney test. All data were expressed as the mean ± SD. Values of P < 0.05 denoted the presence of a statistically significant difference.

Results
Conventional RT-PCR for CEA mRNA
The positivity for the CEA band was assessed in reference to the control panel using CEA-expressing cells (Supplementary Fig. S1). Of 304 stage II colorectal cancer patients, 73 cases (24.0%) displayed a clear CEA band with expression of the PBDG gene, and the remaining 231 cases did not by conventional RT-PCR assays (Fig. 1).

qRT-PCR for CEA mRNA
CEA transcripts were measured by qRT-PCR and normalized by PBDG gene expression. The CEA/PBDG value, designated as the micrometastasis volume (MMV) ranged widely from 0 (group a, n = 90) to >1 × 10⁻⁴ (group b, n = 111), >1 × 10⁻³ (group c, n = 62), and >1 × 10⁻² (group d, n = 33). We grouped categories c and d as the high MMV group (n = 95, 32.1%) and categories a and b into the low MMV group (n = 201, 67.9%). A clinicopathologic survey indicated that high MMV was significantly associated with the presence of lymphatic invasion (P = 0.030) and smaller tumor size (P = 0.009). MMV was not associated with the presence of ASCO risk factors (Table 1).

Survival analyses
Conventional RT-PCR. After exclusion of inappropriate cases (n = 8, Fig. 1), 72 CEA band-positive cases and 224 CEA band-negative cases were analyzed for DFS and OS. We found
that the CEA band-positive cases had significantly worse 5-year DFS and final OS than the CEA band-negative cases ($P = 0.021$, 0.030, respectively, Fig. 2A and C), but there was no significant difference in 5-year OS ($P = 0.287$, Fig. 2B). Of CEA band-positive cases, 27 cases received postoperative chemotherapy by random allocation using HGFU for 1 year, whereas 27 cases were randomly allocated to no treatment. There was no significant difference in 5-year DFS and 5-year OS between the two groups (Supplementary Fig. S4). There was no difference in mean follow-up period in the CEA band-positive and band-negative groups ($P = 0.660$; mean ± SD, 79.2 ± 24.4 vs. 79.9 ± 22.9 months).

qRT-PCR. Survival analyses indicated that the high MMV group had significantly worse 5-year DFS, 5-year OS, and final OS as compared with the low MMV group ($P = 0.001$, 0.016, 0.003; Fig. 3A–C). Irrespective of chemotherapy applied to high MMV cases, high MMV group consistently showed significantly worse 5-year DFS as compared with the low MMV group with no treatment ($P = 0.009$, 0.007; Supplementary Fig. S5). Similar results were observed in analyses for OS ($P = 0.003$, 0.026; data not shown). There was no difference in mean follow-up period in high MMV and low MMV groups ($P = 0.8471$; mean ± SD, 86.0 ± 25.8 vs. 79.9 ± 22.1 months).

Among various clinical and pathologic characteristics, presence of lymphatic invasion was a significant risk factor for shorter 5-year DFS ($P = 0.033$) in addition to high MMV ($P = 0.001$), but ASCO risk factor was not (Table 2 and 3). Multivariate analyses indicated that high MMV alone was retained as an independent risk factor ($P = 0.004$, Table 2). As for 5-year OS and final OS, high MMV alone was significantly associated with poor prognosis ($P = 0.020$, 0.004; risk ratio 3.097, 3.340, respectively; Table 3).

In addition, the micrometastasis-free colorectal cancer group (group a) had a favorable prognosis. Five-year DFS was 93.3%; 5-year OS and final OS were both 97.8% (Supplementary Fig. S3A–S3C).

Disease recurrence mode

Among 296 patients, 51 developed disease recurrence after surgery. The recurrent organ sites are listed in Supplementary Fig. S6. Like more advanced-stage patients, stage II patients often had hematogenous metastasis to liver and lung.

Discussion

We have demonstrated clinical significance of micrometastasis in stage II colorectal cancer as a result of long-term follow-up. We are not aware of other reports on prospective multicenter studies that followed patient outcomes for a duration as long as our clinical trial (median, 82.2 months). We found that MMV was a particularly useful biomarker for discriminating both high risk (group c+d) and low risk (group a) for disease recurrence in stage II colorectal cancer. The recurrent mode was mainly hematogenous metastasis to liver and lung in stage II colorectal cancer patients, which is the serious problem as is the case with stage III colorectal cancer.

To detect occult tumor cells in lymph nodes, we employed CEA-targeted molecular detection by RT-PCR because our retrospective study showed that micrometastasis detected by RT-PCR, but not by IHC, was associated with poor prognosis in stage II colorectal cancer (7). In routine practice, RT-PCR is more convenient than IHC because IHC of occult cancer cells requires the extraordinary labor of preparing slides and searching minimal tumor cells under the microscopy. Moreover, the advantage of the molecular genetic technique is that it allows examination of a large quantity of lymph nodes; in this way, unstable features of IHC caused by the number of inspected slices can be avoided (20).
examined representative 5 lymph nodes near the primary tumor for detection of micrometastasis. We made this choice based on detailed lymph node mapping of micrometastasis by IHC that showed that the initial occult tumor spread was found at pericolic nodes adjacent to the tumor (level 1) in 25 of 26 node-negative colorectal cancer patients (96.2%; Supplementary Fig. S7), which suggests that micrometastasis is initially generated around the tumor. We also considered that molecular inspection of additional 5 lymph nodes on current pathologic examination would be clinically applicable as a routine practice.

Through our previous translational studies (22), we decided that lymph nodes should be collected within 3 hours after tumor resection to maintain the quality of RNA materials. Surgeons were instructed before the start of this clinical trial to retrieve lymph nodes using the RNase-free disposable lymph node sampling kit (Supplementary Fig. S1; ref. 22). As a result, RNA quality was preserved in 304 of 315 colorectal cancer cases (96.5%), which we think is a sufficiently acceptable range in clinics. For clinical application, qRT-PCR is suitable because the clinical useful threshold was better provided by qRT-PCR, than the conventional RT-PCR, suggesting that adjustment of CEA value by the appropriate internal control is essentially important.

Studies have not supported a rationale for application of chemotherapy for all stage II colorectal cancer patients (30, 31). However, 25% of stage II patients ultimately die from the disease recurrence (1). This dilemma has been carried over for decades. ESMO (European Society for Medical Oncology) guideline and a proposal from ASCO in 2004 introduced several prognostic factors such as perforation, T4 lesions, poorly differentiated histology, inadequately sampled nodes to identify high-risk stage II colon cancer (30, 31). Univariate analysis showed that high MMV and lymphatic invasion were indicative of shorter 5-year DFS (76.4%) than the CEA band-negative cases (87.5%; n = 224, P = 0.021). B, there was no significant difference in 5-year OS between the two groups (P = 0.287). The 5-year OS was 91.7% versus 95.1%, respectively. C, there was a significant difference in final OS between the two groups (P = 0.030). The final OS was 86.1% versus 94.2%, respectively. There was no difference in mean follow-up period in the CEA band-positive and band-negative groups (P = 0.660; mean ± SD, 79.2 ± 24.4 vs. 79.9 ± 23.0 months). Median follow-up period was 81.8 (22.0–133.2) months and 82.5 (5.3–124.9) months, respectively. DFS, disease-free survival; OS, overall survival.
postoperative chemotherapy by randomization to CEA band-positive groups, no significant difference was noted in patients' prognosis (Supplementary Fig. S4). In addition, survival analyses of the entire CEA band-positive groups (31 chemotherapy vs. 41 no treatment) showed similarly insignificant results (Supplementary Fig. S8). This is because of small size of the PCR-positive group and more likely to be due to a sort of adopted therapeutics. The current standard adjuvant therapy including FOLFOX, capecitabine, or UFT tegafur-uracil/UZEL (33–35) did not emerge in clinics those days when this study started. We used HCFU which was later proved to be less effective even than UFT alone (36) and it is not available today. Therefore, to obtain the correct answer, a standard chemotherapy should be applied to the more numbers of PCR-positive cases in the next stage.

Although we could not determine an efficacy of chemotherapy in high MMV cases, we still consider that such group may be an appropriate target for a postoperative adjuvant chemotherapy for the following reasons. First of all, lymph node metastasis in stage III colorectal cancer is a well-established predictive marker to ensure survival benefit by chemotherapy (33, 37–38). We previously found that one-step nucleic acid amplification (OSNA) of cytokeratin 19 (CK19) mRNA provided a judgment performance equivalent to a 2-mm-interval histopathologic examination of lymph nodes of colorectal cancer (39). In our separate multicenter prospective study, we found by OSNA that tumor volume in lymph nodes of colorectal cancers upstaged from stage II to stage III (17.6%, 13/76) ranged widely. Of interest was that the values were
largely overlapped with those in lymph nodes of stage III colorectal cancers (40). The prognosis of these upstaged colorectal cancer patients is uncertain until 5 to 10 years ahead. Importantly, however, the current study uncovered that MMV determined by qRT-PCR for CK19 mRNA was also useful to discern high-risk stage II colorectal cancer patients in the same clinical settings (Supplementary Fig. S9). In this context, OSNA could substitute CEA mRNA in LNs owing to its simple and rapid system and would be helpful to provide a concept that stage II is a transitional place between carcinoma; Por, poorly differentiated adenocarcinoma; LN, lymph node; Well, well-differentiated adenocarcinoma. *, statistically significant.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Authors’ Contributions

Conception and design: H. Yamamoto, K. Murata, T. Ohnishi, T. Kato, M. Ikeda, M. Sekimoto, N. Matsuura, M. Monden, M. Mori

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H. Yamamoto, K. Murata, M. Fukunaga, T. Ohnishi, Y. Miyake, T. Kato, Y. Nakamura, I. Takemasa, M. Ikeda, M. Ohue, M. Monden, M. Mori

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): H. Yamamoto, T. Kato, M. Ohhtsuka, Y. Nakamura, M. Sekimoto, N. Matsuura, M. Monden, M. Mori

Writing, review, and/or revision of the manuscript: H. Yamamoto, T. Kato, Y. Nakamura, T. Mizushima, R. Nezu, N. Matsuura, M. Monden, Y. Doki, M. Mori

Other (technical advice and patients follow-up): S. Noura

Acknowledgments

Other participants in the clinical study are:

Takayuki Fukuzaki: Department of Surgery, Osaka Saiseikai Senri Hospital, Osaka, Japan.

Taishi Hata: Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.

Kimimasa Ikeda: Department of Surgery, Minoh City Hospital, Osaka, Japan.

Masakazu Ikenaga: Department of Surgery, Higashiosaka City General Hospital, Osaka, Japan.

Masanori Kishibuchi: Department of Surgery, Shitennoji Hospital, Osaka, Japan.

Toshiharu Morita: Department of Surgery, Toyonaka Municipal Hospital, Osaka, Japan.

Hirofumi Ohta: Department of Surgery, Ikeda Municipal Hospital, Osaka, Japan.

Shu Okamura: Department of Surgery, Suita Municipal Hospital, Osaka, Japan.

Masaki Okuyama: Department of Surgery, Kaizuka City Hospital, Osaka, Japan.

Nobuo Tanaka: Department of Surgery, Itami City Hospital, Hyogo, Japan.

Yoshio Uemura: Department of Surgery, Kinki Central Hospital of the Mutual Aid Association of Public School Teachers, Hyogo, Japan.

Makoto Watase, Ogawa A: Department of Surgery, Tane General Hospital, Osaka, Japan.

Grant Support

This work was supported by MEXT KAKENHI under grant number 10307028.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 7, 2015; revised December 9, 2015; accepted January 10, 2016; published OnlineFirst February 1, 2016.

Table 3. Univariate analysis for 5-year OS and OS

<table>
<thead>
<tr>
<th>S-5-year OS Univariate analysis</th>
<th>Risk ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA mRNA in LN (high MMV vs. low MMV)</td>
<td>3.097 (1.89–8.53)</td>
<td>0.020</td>
</tr>
<tr>
<td>Age (≥64 years vs. < 64 years)</td>
<td>1.026 (0.394–2.826)</td>
<td>0.958</td>
</tr>
<tr>
<td>Sex (male vs. female)</td>
<td>1.038 (0.399–2.861)</td>
<td>0.938</td>
</tr>
<tr>
<td>Tumor location (colon vs. rectum)</td>
<td>2.047 (0.705–5.381)</td>
<td>0.176</td>
</tr>
<tr>
<td>Tumor size (≥51 mm vs. <51 mm)</td>
<td>1.055 (0.383–2.787)</td>
<td>0.913</td>
</tr>
<tr>
<td>Differentiation (well, mod vs. muc, por)</td>
<td>1.839 (0.101–9.015)</td>
<td>0.587</td>
</tr>
<tr>
<td>Lymphatic invasion (present vs. absent)</td>
<td>1.778 (0.685–4.894)</td>
<td>0.257</td>
</tr>
<tr>
<td>Venous invasion (present vs. absent)</td>
<td>0.934 (0.321–2.454)</td>
<td>0.892</td>
</tr>
<tr>
<td>T stage (T3 vs. T4a, T4b)</td>
<td>1.545 (0.435–4.368)</td>
<td>0.464</td>
</tr>
<tr>
<td>Retrieved LN number (<12 vs. 12, ≥12)</td>
<td>0.539 (0.195–1.405)</td>
<td>0.206</td>
</tr>
<tr>
<td>ASCO risk factor (positive vs. negative)</td>
<td>1.674 (0.643–4.610)</td>
<td>0.291</td>
</tr>
</tbody>
</table>

OS: Univariate analysis

<table>
<thead>
<tr>
<th>Risk ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA mRNA in LN (high MMV vs. low MMV)</td>
<td>3.340 (1.464–8.019)</td>
</tr>
<tr>
<td>Age (≥64 years vs. < 64 years)</td>
<td>0.688 (0.298–1.572)</td>
</tr>
<tr>
<td>Sex (male vs. female)</td>
<td>1.170 (0.513–2.812)</td>
</tr>
<tr>
<td>Tumor location (colon vs. rectum)</td>
<td>1.996 (0.803–4.596)</td>
</tr>
<tr>
<td>Tumor size (≥51 mm vs. <51 mm)</td>
<td>0.825 (0.352–1.901)</td>
</tr>
<tr>
<td>Differentiation (well, mod vs. muc, por)</td>
<td>1.339 (0.074–6.377)</td>
</tr>
<tr>
<td>Lymphatic invasion (present vs. absent)</td>
<td>1.562 (0.686–3.663)</td>
</tr>
<tr>
<td>Venous invasion (present vs. absent)</td>
<td>0.712 (0.273–1.672)</td>
</tr>
<tr>
<td>T stage (T3 vs. T4a, T4b)</td>
<td>1.017 (0.294–3.663)</td>
</tr>
<tr>
<td>Retrieved LN number (<12 vs. 12, ≥12)</td>
<td>0.682 (0.296–1.558)</td>
</tr>
<tr>
<td>ASCO risk factor (positive vs. negative)</td>
<td>1.314 (0.575–3.028)</td>
</tr>
</tbody>
</table>

Abbreviations: Mod, moderately differentiated adenocarcinoma; Muc, mucinous carcinoma; Por, poorly differentiated adenocarcinoma; LN, lymph node; Well, well-differentiated adenocarcinoma. *, statistically significant.
Yamamoto et al.

15. KRONBERG U, L

43. Yamamoto H, Kondo M, Nakamori S, Nagano H, Wakasa K, Sugita Y, et al. ATP flapless, a cyclooxygenase-2 inhibitor, is an effective chemopreventive
Micrometastasis Volume in Lymph Nodes Determines Disease Recurrence Rate of Stage II Colorectal Cancer: A Prospective Multicenter Trial
Hirofumi Yamamoto, Kohei Murata, Mutsumi Fukunaga, et al.
Clin Cancer Res Published OnlineFirst February 1, 2016.

Updated version
Access the most recent version of this article at:

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2016/01/30/1078-0432.CCR-15-2199.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.