Immunotherapy of Cancer Visualized by Live Microscopy: Seeing Is Believing

Alvaro Teijeira¹, Iñaki Etxeberria¹, Mariano Ponz-Sarvise², and Ignacio Melero¹,³

Affiliations:

¹Immunology and Immunotherapy Department, CIMA, Pamplona, Spain.
²Oncology and ³Immunology Departments, University Clinic, Pamplona, Spain.

Corresponding Author:
Ignacio Melero, MD, PhD
Avda. Pío XII, 55 31008 Pamplona (Spain)
34-948194700 (phone); 34-948194717 (fax)
imelero@unav.es

Running Title: Live Microscopy and Immunotherapy

Disclosure of Potential Conflicts of Interest: I. Melero is a consultant/advisory board member for AstraZeneca, Boehringer Inghelheim, Bristol-Myers Squibb, Eli Lilly, Incyte, Merck Serono, and Roche/Genentech. No potential conflicts of interest were disclosed by the other authors.
Summary

The success of immunotherapy of cancer depends on several cellular events in the tumors that can be visualized by live microscopy strategies in experimental models. Taking advantage of advanced microscopy techniques, Lehmann and colleagues explore in this issue of CCR the mechanism of action of a novel bispecific monoclonal antibody (TCB-CEA) that targets membrane bound CEA and CD3ε.
In this issue of *Clinical Cancer Research*, Lehmann et al. (1) provide supporting evidence for the anti-tumor activity of an immunoglobulin-based bispecific biomolecule that targets CEA positive tumor cells and CD3ε (TCB-CEA). Additional data concerning the characterization of this novel antibody based molecule and its anti-tumor efficacy has been previously published in this journal (2). The CEA-CD3 bispecific antibody compound (RO6958688) was carefully designed to bind with high affinity a CEA epitope proximal to the protease cleavage site of the glycoprotein, allowing therefore to only engage membrane bound CEA and not the cleaved soluble form. The other specificity of the antibody targets CD3ε, with relatively low affinity. This feature should ensure that the T cells only get activated within the tumors, once getting in touch with target cells.

Several approaches based on microscopy are used to define the activity of the new agent. First, conventional confocal microscopy on living co-cultures of T cells and tumor cells was performed to show efficient activation and killing mediated by the bispecific antibody which also favored the formation of multiple stable cell contacts between T lymphocyte and cancer cells (artificial immune synapses). These data in conjunction with morphological evidence that showed T-cell polarization mediated by TCB-CEA (2) suggests that several mechanisms convey to mediate, at least *in vitro*, effective killing of tumor cells with this compound. However, the outcome of this 2D co-culture system reflects defectively the situation *in vivo*. To overcome these limitations authors performed whole body fluorescence imaging and confocal microscopy to confirm that their bispecific antibody effectively accumulates in CEA positive tumors engrafted in mice.

Intravital microscopy has rapidly evolved to permit *in vivo* tissue imaging specifically identifying cell subsets by the use of transgenic fluorescent proteins or *ex vivo* labeling with fluorescent probes (Figure 1). For this purpose two-photon microscopy is the most commonly used technology to ensure observations in the tissue at one to two hundred micrometers in depth. The physiology of the immune system is one of the research fields that has benefited the most from this microscopy technology advances, mainly through the pioneering work of Cahalan, Germain, Bousso and Von Adrian (3). Dynamic time-lapse images preserving the physiological conditions have
allowed for important observations regarding cell migration of immune cell subsets and cell-to-cell interactions. Unfortunately the technique does not yet offer, in general, good subcellular resolution for molecular imaging, although novel complementary and correlative approaches have been recently introduced to overcome these limitations (3, 4).

In the case of tumor immunology, techniques are available to continuously image transplantable mouse tumors under multiphoton confocal microscopy. Using glass chambers on skin flaps over tumors, some groups have shown the kinetics of cytotoxic T lymphocytes and NK cells when dealing with transplanted tumors (5, 6). Several parameters such as efficient infiltration of T cells in the tumor tissue, numbers and persistence of contacts with tumor cells and appearance of morphological features of apoptosis on target cancer cells can be quantified in these studies (Figure 1). Functional interactions with other components of the complex cellular and extracellular matrix milieu present in tumors have also been studied in the last years, including myeloid cells, blood vasculature and extracellular matrix constituents. Sufficiently long engraftment of tumors to mimic a well-established lesion is also considered of importance (7). Even if still imperfect, intravital microscopy has allowed us to gain insights into the effects of immunostimulatory monoclonal antibodies such as anti CD137 (8) and anti-PD-1 (9). Those studies have been mainly focused on the CTL behavior within the tumor, although new exciting reports are probably about to unravel the dynamic interplay with other immune cells, such as dendritic cells and CD4 T cells in the context of several strategies of immunotherapy.

To functionally explore TCB-CEA, Lehmann and colleagues (1) use a reductionist but yet relevant strategy, co-engrafting PBMCs from a healthy donor stained with a fluorescent probe with red fluorescent CEA+ transfected tumor cells. Despite the limitations, they are able to show in their imaging data similar results to those obtained in the less complex in vitro system. They report that efficient killing highly relies in T-cell activation (and subsequent proliferation/survival) within tumors and on an increased T cell ability to engage several tumor cells. Crucially T-cell activation in the tumor microenvironment is known to result in local production of chemokines and proinflammatory mediators, these phenomena probably explaining the influx
of new coming T cells, following the local activation of pre-existing tumor-infiltrating T-lymphocytes by TCB-CEA.

The resulting impressive time-lapse videos offer an important proof of concept with regard to the antitumor effects of the drug. Although the imaging system is not completely physiologic yet, efficient intravital imaging of immunotherapy should benefit in the long run from new models of humanized mice that would to some extent try to recapitulate some of the most important immune features of real patients (10). Some work needs to be done in this direction to improve the visualization of immune populations and tumors, gaining advances in non-labeled imaging of normal and malignant tissue. Along the same lines the development of new specific ways to fluorescently stain specific cell subpopulations without altering their functional performance should be accomplished.

The T cell bispecific compound used by Lehmann and colleagues (1) is already undergoing early phase clinical trials (NCT02324257). In this regard the results of Lehmann and colleagues and in conjunction with those by (2) nicely suggest tumor targeting and anti-tumor efficacy. One of the main advantages of this T-cell-engaging bispecific formulation is the intelligent design of the Ab, ensuring effective targeting of the tumor and exclusive activation of T cells within the tumor microenvironment. The key point is to avoid T cell activation in any other location thus preventing dangerous systemic inflammation. This depends on the concept that cross-linking of TCR-CD3 complexes is absolutely required for signaling and monomeric ligands do not trigger T-cell activation. However in cases with abundant circulating tumor-derived microvesicles with CEA on their membrane off-target T-cell fire may become a problem.

We will need to wait for the first release of clinical trial data to see whether the design of TCB-CEA accomplishes its intended functions in a safe manner. CEA expression on the luminal side of enterocytes could pose safety problems but it is likely that such cell location would be out of reach based on the expected the biodistribution of TCB-CEA.

In the clinical arena at least two combinations encompassing RO6958688 have been started: (i) Concomitant combination with an anti-PDL1 mAb (Atezolizumab) (NCT02650713) and (ii) with the B-cell anti-CD20 depleting...
mAb Obinotuzumab (NCT02324257). The rationale for the first combination comes from the CD3-IFNγ-PD-L1 adaptive resistance loop. Obinotuzumab presumably aims to avoid antidrug antibodies (ADAs) that could be formed against the foreign protein sequences of the bispecific antibody such as interchain linkers. In addition to the ADAs, there is new evidence that links B-cells with a pro-tumorigenic role in gastrointestinal tumors (11) and thus provides another reason to trust the efficacy of the combination of obinotuzumab with the CEA-CD3 bispecific antibody in patients.

In vivo microscopy imaging provides robust results in support of a given immunotherapy strategy and can be especially suitable to test and select the most synergistic immunotherapy combinations (12). The article by Lehmann and colleagues (1) clearly adds significance to these experimental approaches and encourages further investigations with more advanced imaging techniques to better understand this and other immunotherapy compounds in order to define the best opportunities for synergistic combinations.

Grant Support

I. Melero was supported by Ministerio de Economía y Competitividad (MINECO; SAF2014-52361-R) and Fundación BBVA.
References

Figure legend.

Figure 1. Confocal microscopy technical resources to evaluate cancer immunotherapy.

Scheme of microscopy approaches that can be undertaken to observe immune cells performing their functions in malignant and lymphoid tissue. Key measurable parameters by each technique are represented. Co-culture systems underestimate the many factors that determine the efficacy of immunotherapy even though they may outline some of the involved functions. Experimental approaches based on pre-staining with fluorescent dyes or transgenic fluorescent proteins are set up to offer more accurate answers. Multiplex fluorescence microscopy of fixed tissue offers much information but misses the kinetics of the relevant immune phenomena only observable by time-lapse microscopy. *In vivo* intravital microscopy takes into account T-cell traffic and migration which are conceivably key limiting factors (13) for immunotherapies such as those based on adoptive T-cell therapy, immunomodulatory monoclonal antibodies, and tumor-targeted T-cell activating agents such as TCB-CEA. Intravital microscopy is likely to help discover the unexpected including immunotherapy combinations (12) and, at the end of the day, seeing is believing.
Figure 1:

Morphological features of apoptosis in target cells

Dynamic interactions and persistence of cytotoxic cells with target cells.

Tissue infiltration and localization of immune cell subsets.

Cell motility and tissue infiltration of immune cells.

High-resolution confocal imaging of fixed specimens

Molecular dynamics of cytotoxic cell polarization, degranulation, and target cell apoptosis

Molecular/morphological features of killing synapse

Live-cell microscopy

Intravital microscopy

© 2016 American Association for Cancer Research
Clinical Cancer Research

Immunotherapy of Cancer Visualized by Live Microscopy: Seeing Is Believing
Alvaro Teijeira, Iñaki Etxeberria, Mariano Ponz-Sarvise, et al.

Clin Cancer Res Published OnlineFirst June 21, 2016.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-16-1072

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.