ALDH1A3, the Major Aldehyde Dehydrogenase Isoform in Human Cholangiocarcinoma Cells, Affects Prognosis and Gemcitabine Resistance in Cholangiocarcinoma Patients

Ming-Huang Chen1,2, Jing-Jie Weng2,3, Chi-Tung Cheng4, Ren-Chin Wu5, Shih-Chiang Huang6, Chiao-En Wu6, Yi-Hsiu Chung7, Chun-Yu Liu1,2, Mu-Hsin Chang1,2, Ming-Han Chen1, Kun-Chun Chiang8, Ta-Sen Yeh4, Yeu Su3, and Chun-Nan Yeh4

Abstract

Purpose: Intrahepatic cholangiocarcinoma is a fatal primary liver cancer resulting from diagnosis at an advanced stage. Understanding the mechanisms of drug resistance and metastasis of cholangiocarcinoma may improve the disease prognosis. Enhanced aldehyde dehydrogenase (ALDH) activity is suggested to be associated with increased drug resistance and the metastasis. This study aims to investigate the roles of the ALDH isoforms in cholangiocarcinoma.

Experimental Design: Aldefluor assays, RT-PCR, and Western blot analysis were used to identify the major ALDH isoforms contributing to Aldefluor activity in human cholangiocarcinoma cell lines. We manipulated isoform expression in HuCCT1 cells to elucidate the role of ALDH1A3 in the malignant progression of these cells. Finally, we used immunohistochemical staining to evaluate the clinical significance of ALDH1A3 in 77 hepatetomized cholangiocarcinoma patients and an additional 31 patients with advanced cholangiocarcinoma who received gemcitabine-based therapy.

Results: ALDH1A3+ cholangiocarcinoma cells not only migrated faster but were more resistant to gemcitabine. Among the 19 ALDH isoforms studied, ALDH1A3 was found to be the main contributor to Aldefluor activity. In addition, we also found that knockdown of ALDH1A3 expression in HuCCT1 cells markedly reduced not only their sensitivity to gemcitabine, which might be attributed to a decreased expression of ribonucleotide reductase M1, but also their migration. Most importantly, this enzyme was also identified as an independent poor prognostic factor for patients with intrahepatic cholangiocarcinoma, as well as a prognostic biomarker of gemcitabine-treated patients.

Conclusions: ALDH1A3 plays an important role in enhancing malignant behavior of cholangiocarcinoma and serves as a new therapeutic target. Clin Cancer Res; 1–11. ©2016 AACR.

Introduction

Although cholangiocarcinoma is a relatively rare hepatobiliary cancer, the incidence and mortality of cholangiocarcinoma have increased worldwide in recent years (1–3). In fact, intrahepatic cholangiocarcinoma is the second most common liver cancer, accounting for 10% to 15% of all primary liver malignancies (4). Surgical resection is the only available curative therapy for patients with intrahepatic cholangiocarcinoma. However, as most cases of cholangiocarcinoma are diagnosed at advanced disease stages when liver functions are already poor, palliative chemotherapy with gemcitabine and cisplatin is often the best treatment option (4, 5). Furthermore, local or distant recurrences frequently occur in patients who have undergone surgical resection (6); thus, a better understanding of the mechanisms underlying drug resistance and metastasis of cholangiocarcinoma may improve the prognosis of patients with this malignancy.

In humans, the aldehyde dehydrogenase (ALDH) superfamily of enzymes consists of 19 isoforms that are responsible for converting both exogenous and endogenous aldehydes to carboxylic acids (7, 8), and metabolism of the latter represents a major detoxification pathway in the body (7, 8). Different ALDH isoforms are used to identify and isolate neural stem cells (SC; ref. 9), human hematopoietic SCs (10), myogenic precursor cells (11), and adipose-derived adult SCs (12). Elevated ALDH activity is also observed in leukemic SC populations in some acute myelogenous leukemia patients (13). ALDH1 serves as a marker of cancer SCs (CSC) in several types of human tumors.
of solid tumors, including those of the liver (14), head and neck (15), pancreas (16), lung (17, 18), prostate (19), bladder (20), ovary (21), breast (22), and colon (23). On the other hand, the potential of using increased ALDH activities to identify SC of cholangiocarcinoma may improve the disease prognosis. We demonstrated that ALDHhigh cholangiocarcinoma cells not only migrated faster but were more resistant to gemcitabine. Among the 19 ALDH isoforms studied, ALDH1A3 was found to be the main contributor to Aldefluor activity. In addition, we also found that knockdown of ALDH1A3 expression in HuCCT1 cells markedly reduced not only their sensitivity to gemcitabine, which might be attributed to a decreased expression of ribonucleotide reductase M1, but also their migration. Most importantly, this enzyme was also identified as an independent poor prognostic factor for patients with intrahepatic cholangiocarcinoma, as well as a prognostic biomarker of gemcitabine-treated patients. ALDH1A3 plays an important role in enhancing malignant behavior of cholangiocarcinoma and serves as a new therapeutic target.

Materials and Methods

Cell culture

HuCCT1 (purchased from the Japanese Collection of Research Bioresources) and SNU1079 (obtained from the Korean Cell Line Bank) cholangiocarcinoma cells were grown in DMEM (Sigma-Aldrich) supplemented with 10% FBS (Biological Industries) and 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 mg/mL amphotericin B (PSA; Biological Industries). All cells were cultured at 37°C in a 5% CO2 incubator.

Preparation of recombinant lentiviruses and establishment of stable cholangiocarcinoma clones

The pLKO.1-shALDH1A3 (TRCN0000414303) and pLKO.1-shLacZ (TRCN0000072224) vectors were purchased from the National RNAi Core Facility Platform (Academia Sinica). To prepare the desired lentiviruses, 293T cells (8 x 10^5) were seeded onto 6-cm dishes overnight and cotransfected with 2.25 µg of pCMV-AR8.91, 0.25 µg of pMD.G, and 2.5 µg of pLKO.1, using the PolyJet DNA In Vitro Transfection Reagent (SignaGen Laboratories). One day after transfection, cells were switched to a serum-free DMEM supplemented with 1% BSA, and lentiviral particles were collected, respectively, at 24 and 48 hours post-medium change. The two sequential collections were then mixed, and the relative infection unit of each pseudotyped lentivirus was determined by cell viability assays using A549 human lung adenocarcinoma cells as hosts. To establish stable clones expressing short hairpin RNAs (shRNA) against ALDH1A3, HuCCT1 cells were infected with lentiviral particles (multiplicity of infection = 5) carrying the appropriate DNA fragments for 24 hours, followed by puromycin (1 µg/mL) selection.

Aldefluor assay and FACS

Cholangiocarcinoma cells were trypsinized, pelleted, and resuspended in the assay buffer (STEMCELL Technologies) at a density of 1 x 10^6 cells/mL. Then, these cells were incubated with the substrate, BODIPY-aminoacetaldehyde, in the presence or absence of the ALDH inhibitor, N,N-diethylaminobenzaldehyde (DEAB), for 30 minutes at 37°C before being subjected to flow cytometry. The fluorescence of DEAB-treated cells, measured by a BD FACSCalibur, was used as the background, and cells with top 10% (HuCCT1) or 20% (SNU1079) fluorescence intensity were defined as ALDHhigh subpopulations, whereas cells with lowest 10% (HuCCT1) or 20% (SNU1079) fluorescence were deemed as ALDHlow subpopulations. For sorting the ALDHhigh and ALDHlow subpopulations, a BD FACSaria (Becton Dickinson) was applied.

Quantitative reverse transcription PCR

Reverse transcription was performed using 5 µg total RNAs isolated from cells and a reverse transcriptase (Fermentas Life Sciences) in the presence of both random hexamers and oligo-dT (Genomics BioSci & Tech). To prepare standards for quantifying the expression of ALDH isoforms in cholangiocarcinoma cells, fragments of 19 different ALDH isoforms were amplified with their respective isoform-specific primer sets, cloned into the pGEM-T easy vector (Promega), and sequenced. After confirming the correctness of their sequences, they were used to establish standard curves for quantifying the copy numbers of each ALDH isoform in cholangiocarcinoma cells using SYBR Green–based real-time PCR. A PCR fragment of GAPDH was also cloned into the pGEM-T easy vector for establishing GAPDH standard curves. The expression levels of ALDH isoforms were expressed as mRNA copy numbers/1,000 GAPDH mRNA molecules. The cycling conditions for real-time PCR included an initial denaturation cycle at 95°C for 10 minutes; 40 cycles of 95°C for 30 seconds, 60°C for 30 seconds,
and 72°C for 40 minutes; and a final extension step at 72°C for
10 minutes, followed by a melting-curve analysis.

Cell viability measurements

Parental, sorted cholangiocarcinoma cells or stable cholangio-
carcinoma clones were seeded into 96-well plates in normal
growth medium and gemcitabine or cisplatin was added at the
indicated concentrations on the next day. Cell viability was
determined by MTT assays (R&D Systems) 48-hour post-drug
treatment following the manufacturer’s instructions.

Transwell migration assays

Sorted cholangiocarcinoma cells or stable cholangiocarcin-
oma clones were trypsinized and resuspended in serum-free
RPMI1640 medium, and adjusted to a density of 1.25 × 10^5
(HuCCT1) or 5 × 10^5 (SNU1079) cells/mL. Six hundred
microliters of complete medium were placed in the bottom
chamber, and 200 μL of cell suspensions described above were
seeded into the top chamber. The cells were allowed to migrate
for 6 hours and then were fixed with 1% formaldehyde,
followed by staining with 0.005% crystal violet. Before being
examined by light microscopy (Olympus IX70, 10× objective),
cells remaining in the top chamber were removed by cotton
swabs. Three random fields were photographed for each
transwell. The average number of cells migrated per field were
calculated using MetaMorph software (Universal Imaging
Corporation) based on the results of three independent
experiments.

Western blotting

Total lysates from sorted cholangiocarcinoma cells or stable
cholangiocarcinoma clones were prepared using RIPA lysis
buffer and protein concentrations were determined using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Lysates
(25 μg protein) were then separated by electrophoresis on 10%
SDS–PAGE gels and transferred onto nitrocellulose membranes.
The membranes were probed, respectively, with primary anti-
odies against ALDH1A3, RRM1, Oct4, Nanog, Bmi1, E-cad-
herin, N-cadherin, Twist, or β-catenin at 4°C overnight. After
washing with TBST (25 mmol/L Tris, 137 mmol/L NaCl,
0.075% Tween 20; pH 7.4), the membranes were incubated with
either a horseradish peroxidase (HRP)-conjugated anti-goat IgG
(1:3,000; GE Healthcare). The proteins were visualized using
either a horseradish peroxidase (HRP)-conjugated anti-goat IgG
(1:3,000; GE Healthcare). The proteins were visualized using
enhanced chemiluminescence (PerkinElmer Life and Analytical
Sciences, Inc.), according to the manufacturer’s instructions. All
antibodies used were purchased from GenTex International
Corporation.

Patient demographics

We examined the demographic features of 77 patients with
mass-forming cholangiocarcinoma (MF-CCA) who underwent
hepatectomy between 1989 and 2006 at the Department of
Surgery of Chang Gung Memorial Hospital as well as 31 patients
with advanced (either nonresectable or recurrent/metastatic)
intrahepatic cholangiocarcinoma who received 25 mg/m² cispl-
atin followed by 1,000 mg/m² gemcitabine by intravenous infusion
on days 1 and 8 of each 21-day cycle (5). The study was approved
by the local institutional review board of Chang Gung Memorial
Hospital (clinical study numbers 99-2886B, 99-3810B, and 102-
5813B), and written informed consent for drug administration
and immunohistochemical tumor analysis was obtained from
each patient.

ALDH1A3 expression levels of the aforementioned 77 MF-CCA
patients plus 31 patients with advanced cholangiocarcinoma
were examined by immunohistochemical staining. Tissue sec-
sions (4 μm) prepared from the formalin-fixed, paraffin-embed-
ded hepatocytology specimens were incubated with the primary
antibody against ALDH1A3 (N2C2, 1:500 dilution; GenEx) at
4°C overnight. After washing twice with TBS (5 minutes each),
signals were visualized with the Dako Labelled Streptavidin-
Biotin2 (LSAB2) System-HRP (Dako A/S, No. K0675; Dako).
Control slides were incubated with the secondary antibody only.

For the assessment of immunohistochemical staining, the per-
centage of stained target cells was evaluated in 10 random
microscopic fields per tissue section (×400 magnification), and
their averages were subsequently calculated. Staining intensities
were scored as 1 (mild), 2 (moderate), or 3 (strong). H-scores
were calculated as the percentage of positive staining (0–100) ×
the corresponding staining intensity (0–3). Specimens with H-
scores of <100 or ≥100 were classified as having low or high
expression, respectively (range: 5–295; median 100).

Statistical analysis

All data were presented as the mean ± SD. Differences
between the experimental and control groups were calculated
using the Student t test. Progression-free survival (FPS) and
overall survival (OS) rates were evaluated using the Kaplan–
Meier method. Several clinicopathologic variables were consid-
ered for the initial univariate analysis, which was performed
using the log-rank test. The Cox proportional hazards model
was applied for multivariate regression. The SPSS for Windows
(Version 17.0, Chicago) was used for statistical analysis. A value
of P ≤ 0.05 derived from two-tailed test was considered statis-
tically significant.

Results

Enhanced migration and increased resistance to
gemcitabine, but not cisplatin are observed in ALDH1A3
cholangiocarcinoma cells

To confirm the presence of an ALDH1A3 subpopulation in
cholangiocarcinoma cells, expression levels of this enzyme in
two human intrahepatic cholangiocarcinoma cell lines,
HuCCT1 and SNU1079, were analyzed by Aldefluor assays. As
shown in Fig. 1, ALDH1A3 subpopulations were found in the
HuCCT1 (~10%) and SNU1079 (~20%) cell lines; however,
these subpopulations were not detected when DEAB, a com-
monly used selective ALDH inhibitor, was added. Transwell
migration assays were then performed to compare the relative
migration abilities of ALDH1A3 and ALDHlow cells and we
found that the former migrated much faster than the latter
(Fig. 1B). A well-known hallmark of CSCs is their resistance to
conventional chemotherapeutic agents. Because gemcitabine
and cisplatin are currently used as the first-line drugs for treating
biliary tract cancer (5), the cytotoxic effects of these drugs on
cholangiocarcinoma cells were examined. Interestingly, while
the ALDH1A3 cells were more resistant to gemcitabine treatment
than ALDHlow cells, no significant difference in the sensitivity to
cisplatin of these two subpopulations was observed (Fig. 1C).

www.aacjrournals.org

ALDH1A3 Affects Prognosis and Gemcitabine Resistance in CCA

Clin Cancer Res; 2016 OF3

Published OnlineFirst April 13, 2016; DOI: 10.1158/1078-0432.CCR-15-1800

Downloaded from clinncancerres.aacrjournals.org on October 16, 2017. © 2016 American Association for Cancer Research.
ALDH1A3 is primarily responsible for ALDH activity in cholangiocarcinoma cells

To determine which ALDH isoform(s) accounted for most of the ALDH activity detected in the two cholangiocarcinoma cell lines, RT-qPCR was performed to measure the mRNA levels of each ALDH isoform. As shown in Fig. 2A, increased mRNA expression of the ALDH isoforms 1A3 and 1L1 was detected in HuCCT1 cells, whereas increased expression of the 1A3, 1B1, 6A1, 1A1, 18A1, 3B2, and 3B1 isoforms was detected in SNU1079 cells. Among these ALDH isoforms, ALDH1A3 exhibited the most significant and consistent increase in the ALDH high subpopulations of both...
cholangiocarcinoma cell types, suggesting that this enzyme might be largely responsible for the ALDH activity detected by the Aldefluor assays. Western blot analysis was then performed to analyze ALDH1A3 protein levels in the ALDHhigh and ALDHlow subpopulations of both HuCCT1 and SNU1079 cells. As expected, ALDH1A3 protein levels were much higher in the ALDHhigh subpopulations of these two cholangiocarcinoma lines (Fig. 2B).

ALDH1A3 knockdown in HuCCT1 cells increases their sensitivity to gemcitabine, which may be accounted by a downregulated expression of ribonucleotide reductase subunit M1

To further evaluate the role of ALDH1A3 in cholangiocarcinoma malignancy, we established ALDH1A3-knockdown HuCCT1 cells (Fig. 3A) and found that they were more sensitive to gemcitabine than the lacZ-knockdown cells (Fig. 3B).

Figure 2. ALDH1A3 is mainly responsible for the ALDH activity in two human cholangiocarcinoma lines. A, immediately after FACS sorting, both ALDHhigh and ALDHlow HuCCT1 and SNU1079 cells were lysed by TRizol and the total RNAs were harvested for reverse transcription. The amounts of mRNA of indicated ALDH isoforms and GAPDH were then analyzed by quantitative PCR with standard curves. Data are expressed as copy numbers of the indicated ALDH isoforms per 1,000 GAPDH mRNA molecules. B, total lysates (25 μg) from the aforementioned cholangiocarcinoma cells were subjected to Western blot analysis using an anti-ALDH1A3 antibody as a probe. β-Actin signals were used as loading controls.
Interestingly, downregulated expression of RRM1, the main metabolizing enzyme for gemcitabine (25), was detected not only in ALDH1low HuCCT1 and SNU1079 cells but also in ALDH1A3-knockdown HuCCT1 cells (Fig. 3C), which might explain, at least partially, the increased sensitivity of these cells to gemcitabine.

ALDH1A3 knockdown diminishes the migration ability of HuCCT1 cells possibly by inducing a MET

As Shuang and colleagues demonstrated in a recent study that TGFβ1 induced an epithelial–mesenchymal transition (EMT) in another human cholangiocarcinoma line, TFK-1, which was accompanied with increased ALDH1 expression (24), we examined whether altering the expression levels of ALDH1A3 in HuCCT1 cells affected their EMT phenotype. Indeed, we found that ALDH1A3 knockdown in these cells drastically decreased their migration ability (Fig. 4A), which was associated with significant reductions of Bmi-1 and Twist expression, but a marked increase of E-cadherin, the best-known epithelial marker (Fig. 4B). However, this treatment did not influence the expression levels of Oct4 and Nanog, two embryonic SC markers, in HuCCT1 cells. Together, these results suggested that downregulation of ALDH1A3 might induce MET in human cholangiocarcinoma cells.

Correlations between ALDH1A3 expression and clinicopathologic features in patients with MF-CCA who underwent hepatectomy and in those with advanced intrahepatic cholangiocarcinoma receiving chemotherapy

We next analyzed correlations between ALDH1A3 expression levels and clinicopathologic features in two groups of cholangiocarcinoma patients. ALDH1A3 is diffusely expressed in the cytoplasm in MF-CCA (Fig. 5A). Among specimens from 77 MF-CCA patients who underwent hepatectomy, 38 (49.4%) showed strong ALDH1A3 staining intensity (e.g., H-scores ≥100). Interestingly, ALDH1A3 upregulation strongly correlated with elevated alkaline phosphatase (ALP) levels and a positive resection margin. However, only the latter was independently associated with ALDH1A3 overexpression (Supplementary Table S1). In addition, a significant positive association between ALDH1A3 upregulation and disease progression was detected in 31 advanced intrahepatic cholangiocarcinoma patients receiving gemcitabine-based chemotherapy (Supplementary Table S2).

ALDH1A3 may be a poor prognostic indicator for MF-CCA patients who underwent hepatectomy and in those with advanced intrahepatic cholangiocarcinoma receiving gemcitabine-based chemotherapy

Univariate log-rank analysis was then applied to identify factors that had adverse influences on the OS rate in the aforementioned MF-CCA patients. The presence of disease symptoms (elevated ALP and CEA levels, a tumor size > 5 cm, positive surgical-margin status) and strong ALDH1A3 staining intensity were found to correlate with OS (Table 1). However, only a tumor size > 5 cm, positive surgical-margin and strong ALDH1A3 staining intensity were identified as independent predictors for an inferior OS rate in these patients after multivariate Cox proportional hazard analysis (Table 1 and Fig. 5B). In the meantime, for patients with advanced intrahepatic cholangiocarcinoma receiving chemotherapy, high ALDH1A3 expression was correlated with inferior PFS,
Figure 4. ALDH1A3-knockdown expression in HuCCT1 cells reduces their migration ability which may be accounted by a MET transition. A, the migration abilities of the LacZ- and ALDH1A3-knockdown HuCCT1 cells were analyzed by transwell migration assays as above described. Data (left, bottom) shown are the averages of three independent experiments. **, *P < 0.01 when compared with the LacZ-knockdown cells by Student t test. B, total lysates (25 μg) prepared, respectively, from the LacZ- and ALDH1A3-knockdown HuCCT1 cells were subjected to Western blot analyses using antibodies against a variety of EMT markers (i.e., Twist, E-cadherin, N-cadherin, and Bmi1) as well as several embryonic SC markers (i.e., Oct4 and Nanog). β-Actin signals were used as loading controls.

Discussion

In the current study, we isolated ALDH^{high} cells from two intrahepatic cholangiocarcinoma cell lines, HuCCT1 and SN11079, and determined that ALDH1A3 is the main contributor to ALDH activity. Previous studies have reported that ALDH activities measured by the Aldefluor assay may differ among different types of cancer. For example, van den Hoogen and colleagues found that ALDH7A1 is highly expressed in prostate cancer cell lines, prostate cancer tissues, and bone metastasis samples, suggesting that ALDH7A1 is responsible for ALDH activity in prostate cancer (19). In another study, Chen and colleagues compared the levels of ALDH1A1 and ALDH1B1 in various adenocarcinomas (colon, lung, breast, and ovary) by immunohistochemical staining and reported a 5.6-fold higher expression of ALDH1B1 than ALDH1A1 in these cancerous tissues. In addition, they also found that ALDH1B1 is dramatically upregulated in human colon adenocarcinoma and therefore considering it as a potential biomarker for human colon cancer (23). Although high ALDH1A3 levels have already been detected in more aggressive forms of breast, bladder, and lung cancers (18, 22, 26), this work is nevertheless the first, to our knowledge, to report that ALDH1A3 is the main ALDH isoenzyme in intrahepatic cholangiocarcinoma. More importantly, we also found that ALDH1A3 is a critical prognostic factor in 77 patients with intrahepatic cholangiocarcinoma who received hepatectomies among several clinicopathologic features. (Table 1; Fig. 5B). However, the smaller patient number might be the limitation of survival analysis in this study. In addition, we showed that ALDH1A3 is also a prognostic biomarker of gemcitabine-treated patients using samples from 31 patients with advanced cholangiocarcinoma as a validation cohort (Fig. 5C and D).

ALDH activity is a universal CSC marker (7), and most studies report that drug resistance induced by ALDH upregulation is frequently due to the increase of CSC population (7). CSCs are slow-growing cells which are generally quiescent and therefore are resistant to drugs that target fast-growing cancer cells (27). Another possible resistance mechanism resulted from ALDH upregulation can be attributed to an increased ALDH-mediated metabolism of drugs such as cyclophosphamide (28). As treatment with gemcitabine and cisplatin is currently the standard therapy for treating cholangiocarcinoma (5), we investigated whether ALDH1A3 expression in human cholangiocarcinoma cells affects their responses to these drugs. To our surprise, ALDH1A3 expression conferred resistance to gemcitabine, but not to cisplatin in two human cholangiocarcinoma lines (Fig. 1C), which cannot be explained simply by the quiescent properties of CSCs because both drugs target the rapid-growing cancer cells. Gemcitabine, a pyrimidine-based antimetabolite, needs to be converted into gemcitabine triphosphate before being incorporated into DNA to inhibit DNA synthesis and induce apoptosis (29). In this regard, RRM1 is a molecular target of gemcitabine which plays a key role in gemcitabine resistance (25). Results from previous studies not only showed that increased RRM1 expression occurs after the continuous exposure of non–small cell lung cancer (NSCLC) cells to gemcitabine but also led to the postulation that the survival of NSCLC patients with low RRM1 expression might be improved by gemcitabine treatment (30, 31). In our
ALDH1A3 expression levels are inversely correlated with the survival of patients with resectable mass-forming and advanced cholangiocarcinoma, respectively. A, pictures on the left and right show low and high ALDH1A3 immunohistochemical staining intensities, respectively. Scale bar, 50 μm. B, Kaplan–Meier plot of OS in patients with resectable MF-CCA tumors based on their ALDH1A3 expression levels. C, the ALDH1A3 group with high H-scores showed poorer OS in patients with resectable cholangiocarcinoma ($P = 0.001$). Kaplan–Meier plots of PFS (C) and OS (D) of 31 patients with advanced cholangiocarcinoma according to their ALDH1A3 expression levels.
study, significant decreases in the RRM1 levels were found in ALDH1low HuCCT1 and SNU1079 cells as well as in ALDH1A3-knockdown HuCCT1 cells (Fig. 3C), which may at least in part explain their increased sensitivity to gemcitabine (Figs. 1C and 3). In good agreement, when the correlation between ALDH1A3 expression levels and response to chemotherapy in 31 cholangiocarcinoma patients who had received gemcitabine-based chemotherapy were examined, higher response rates were also detected in patients that expressed low levels of ALDH1A3 (Supplementary Table S2).

EMT is a key event for the increases in both cancer invasive-ness and CSC properties (32). Shuang and colleagues discovered that TGF\textbeta{}1 induced EMT together with the appearance of ALDH1-positive cells in cholangiocarcinoma (24). In accordance, a reduction in mesencymal properties of ALDH1A3-knockdown cells was found (Fig. 4), suggesting that ALDH1A3 upregulation may increase the migration ability of HuCCT1 cells via inducing an EMT.

In conclusion, we discovered that ALDH1A3 is the main contributor to Aldefluor activity in both HuCCT1 and SNU1079 cholangiocarcinoma cells. We also demonstrated that ALDH1A3 expression levels in these cells are positively correlated with their resistance to gemcitabine and knockdown of ALDH1A3 in HuCCT1 cells markedly increases their drug sensitivity and severely decreases their migration ability possibly by reducing RRM1 expression and mesencymal phenotypes. Most importantly, we demonstrated for the first time that ALDH1A3 is a poor prognostic factor for patients with intrahepatic cholangiocarcinoma who underwent hepatectomy and in those with advanced intrahepatic

Table 1. Univariate and multivariate analysis of factors influencing the OS of MF-CCA patients

<table>
<thead>
<tr>
<th>Factors</th>
<th>Median survival time (months)</th>
<th>95% CI of median</th>
<th>Univariate P value</th>
<th>Relative risk (95% CI)</th>
<th>Multivariate P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n = 33)</td>
<td>14.70</td>
<td>7.89-21.50</td>
<td>0.757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n = 44)</td>
<td>10.46</td>
<td>4.97-15.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 60 (n = 37)</td>
<td>13.84</td>
<td>3.46-24.22</td>
<td>0.473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 60 (n = 40)</td>
<td>12.99</td>
<td>7.23-18.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (n = 12)</td>
<td>37.71</td>
<td>4.78-70.63</td>
<td>0.007</td>
<td>2.338 (0.973-5.620)</td>
<td>0.058</td>
</tr>
<tr>
<td>Positive (n = 65)</td>
<td>10.46</td>
<td>5.41-15.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 34 (n = 38)</td>
<td>13.32</td>
<td>8.64-17.98</td>
<td>0.180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 34 (n = 38)</td>
<td>10.72</td>
<td>2.28-19.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 36 (n = 40)</td>
<td>12.99</td>
<td>6.41-19.56</td>
<td>0.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 36 (n = 30)</td>
<td>14.70</td>
<td>6.23-23.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALP (IU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 94 (n = 23)</td>
<td>23.90</td>
<td>11.65-36.15</td>
<td>0.567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 94 (n = 51)</td>
<td>9.11</td>
<td>5.39-12.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bil (total; mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1.3 (n = 63)</td>
<td>13.32</td>
<td>5.86-20.77</td>
<td>0.063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1.3 (n = 14)</td>
<td>10.72</td>
<td>0.00-22.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3.5 (n = 22)</td>
<td>4.70</td>
<td>3.11-6.29</td>
<td>0.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 3.5 (n = 49)</td>
<td>19.04</td>
<td>13.31-24.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum CEA (ng/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 5 (n = 25)</td>
<td>18.51</td>
<td>2.09-34.93</td>
<td><0.001</td>
<td>2.019 (1.076-3.790)</td>
<td>0.029</td>
</tr>
<tr>
<td>> 5 (n = 50)</td>
<td>9.11</td>
<td>4.12-14.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (n = 56)</td>
<td>19.04</td>
<td>13.93-24.14</td>
<td>0.006</td>
<td>1.948 (1.085-3.502)</td>
<td>0.026</td>
</tr>
<tr>
<td>Positive (n = 21)</td>
<td>4.70</td>
<td>2.24-7.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 5 cm (n = 32)</td>
<td>19.99</td>
<td>13.75-26.23</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5 cm (n = 42)</td>
<td>8.45</td>
<td>2.39-14.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph node</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (n = 47)</td>
<td>19.89</td>
<td>16.71-23.07</td>
<td>0.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive (n = 28)</td>
<td>10.29</td>
<td>1.13-19.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well (n = 2)</td>
<td>2.73</td>
<td>NA</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (n = 41)</td>
<td>13.84</td>
<td>7.45-20.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (n = 32)</td>
<td>12.99</td>
<td>3.46-22.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (n = 2)</td>
<td>4.37</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDH1A3 expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low expression (n = 39)</td>
<td>26.86</td>
<td>19.06-34.67</td>
<td><0.001</td>
<td>6.151 (3.176-11.915)</td>
<td><0.001</td>
</tr>
<tr>
<td>High expression (n = 38)</td>
<td>4.70</td>
<td>2.67-6.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (n = 49)</td>
<td>13.52</td>
<td>7.86-18.77</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive (n = 16)</td>
<td>19.99</td>
<td>10.01-29.91</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.
Cholangiocarcinoma receiving chemotherapy. Collectively, our results suggest ALDH1A3 as a new therapeutic target for cholangiocarcinoma.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.-I. Weng, C.-T. Cheng, S.-C. Huang, C.-E. Wu, Y.-H. Chung, Y. Su, C.-N. Yeh
Writing, review, and/or revision of the manuscript: M.-H. Chen, J.-I. Weng, C.-T. Cheng, R.-C. Wu, C.-E. Wu, Y.-H. Chung, M.-H. Chen, Y. Su, C.-N. Yeh
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.-I. Weng, C.-T. Cheng, C.-Y. Liu, T.-S. Yeh, C.-N. Yeh
Study supervision: C.-Y. Liu, M.-H. Chang, Y. Su, C.-N. Yeh

Acknowledgments
The authors thank Ms. Tzu-Chi Chen for providing excellent technical assistance.

Grant Support
This work was supported by the Taiwan Cancer Clinic Foundation, the Seu-Fyan Research Foundation of International Medicine, the Chong Hing Loon Memorial Cancer and Biotherapy Research Center, and the Yen Tjing Ling Medical Foundation. Additional support was provided by the Taipei Veterans General Hospital (V104C-076; to M. Chen), the Chang Gung Memorial Hospital (CMRP3B0363, CMRP3G3053, CMRP3E1611, NMRPGSD6031 and NMRPGS5D6032; to C. Yeh), and the National Science Council [MOST 103-2314-B-182A-081-MY2, 103-2314-B-073-071, and 104-2320-B-010-007; to Y. Su].

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 11, 2015; revised March 12, 2016; accepted March 15, 2016; published OnlineFirst April 13, 2016.

ALDH1A3, the Major Aldehyde Dehydrogenase Isoform in Human Cholangiocarcinoma Cells, Affects Prognosis and Gemcitabine Resistance in Cholangiocarcinoma Patients

Ming-Huang Chen, Jing-Jie Weng, Chi-Tung Cheng, et al.

Clin Cancer Res Published OnlineFirst April 13, 2016.

Updated version
Access the most recent version of this article at:

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2016/04/08/1078-0432.CCR-15-1800.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.