Phase I trial of the PI3Kα isoform inhibitor TAK-117

A First-in-Human, Phase I, Dose-Escalation Study of TAK-117, a Selective PI3Kα Isoform Inhibitor, in Patients with Advanced Solid Malignancies

Dejan Juric1, Johann de Bono2, Patricia LoRusso3, John Nemunaitis4, Elisabeth I. Heath5, Eunice L. Kwak1, Teresa Macarulla Mercadé6, Elena Geuna7, Maria Jose de Miguel-Luken2*, Chirag Patel8, Keisuke Kuida8, Serap Sankoh8, Eric Westin8, Fabian Zohren8, Yaping Shou8, and Josep Tabernero6

1Massachusetts General Hospital, Boston, MA. 2The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom. 3Yale University, New Haven, CT. 4Mary Crowley Cancer Research Center, Dallas, TX. 5Karmanos Cancer Institute, Wayne State University, Detroit, MI. 6Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain. 7Investigative Clinical Oncology, Fondazione Del Piemonte Per L'Oncologia, Candiolo Cancer Institute, Candiolo, Italy. 8Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited.

*Current affiliation: Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.

AACR member: Dr Dejan Juric

Running head [Limit 60 characters incl. spaces; current 51]:
Phase I trial of the PI3Kα isoform inhibitor TAK-117

Keywords [5 required; up to 10 from CCR pull-down list]: current 6 --- Phase I-III Trials__Breast cancer, Phase I-III Trials__Gastrointestinal cancers: colorectal, Phase I-III Trials__Gynecological cancers: ovarian, pharmacokinetics and pharmacodynamics, kinase and phosphatase inhibitors, novel antitumor agents

User-defined keywords [optional, up to 3]: PI3Kα Isoform Inhibitor, TAK-117, MLN1117
Phase I trial of the PI3Kα isoform inhibitor TAK-117

Trial funding: Research was sponsored by Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited.

Corresponding author:
Dejan Juric, MD
Massachusetts General Hospital
55 Fruit Street, Boston, Massachusetts, 02114
Phone: (617) 671-5392
Fax: (617) 724-1079
Email: juric.dejan@mgh.harvard.edu

Statement of originality: The authors confirm that this manuscript contains original material.

Journal: Clinical Cancer Research
Article type: Cancer Therapy: Clinical
Category: Clinical Trials

- **Number of manuscript pages:** 51
- **Figures/tables** (limit 6; figure panels are allowed but not table pieces): 3/3
- **Statement of Translational Relevance** (120-150 words): 209 following edits
- **Abstract word count** (limit 250 words): 250
- **Body text word count** (limit 5000 words): 3798
- **References** (limit 50): 34
- **Appendix:** supplementary methods and results; 3 tables.
- **ClinicalTrials.gov identifier:** NCT01449370
Reviewer suggestions [Required: 2-5 to include; Optional: up to 3 to exclude]:

<table>
<thead>
<tr>
<th>Suggested reviewers to include</th>
<th>Email, address, phone, and fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pamela Munster</td>
<td>Pamela.Munster@ucsf.edu 1600 Divisadero St, MZ Bldg A, San Francisco CA 94115 Phone: 415-885-7810; Fax: 415-353-7050</td>
</tr>
<tr>
<td>2 Carlos L. Arteaga</td>
<td>carlos.arteaga@vanderbilt.edu 2220 Pierce Ave #777, Nashville, TN 37232 Phone: 615-936-3524; Fax: 615-936-1790</td>
</tr>
<tr>
<td>3 Ferry A. Eskens</td>
<td>f.eskens@erasmusmc.nl Erasmus MC - Schildkliqcentrum D-442 Postbus 2040, 3000 CA Rotterdam Phone: 010-7044986; Fax: 010-7034768</td>
</tr>
<tr>
<td>4 Martijn Lolkema</td>
<td>m.lolkema@erasmusmc.nl Erasmus MC, Groene Hilledijk 301 PO Box 5201, 3008AE Rotterdam Phone: 31107041906; Fax: 31107041003</td>
</tr>
<tr>
<td>5 Chris Twelves</td>
<td>c.j.twelves@leeds.ac.uk Level 4, Bexley Wing, St James's University Hospital Beckett Street, Leeds LS9 7TF 0113 2068186</td>
</tr>
</tbody>
</table>

Prior presentations of this study:

Dejan Juric, Johann de Bono, Patricia LoRusso, John Nemunaitis, Elisabeth Heath, Eunice L. Kwak, Teresa Macarulla, Elena Geuna, Maria Jose de Miguel-Luken, Chirag Patel, Keisuke Kuida, Serap Sankoh, Fabian Zohren, Yaping Shou, Josep Tabernero.

Authors’ disclosures of potential conflicts of interest

DJ has served in a consulting or advisory role for Novartis, Eisai, BIND Therapeutics, EMD Serono, and Natera. JDB has received honoraria from AstraZeneca, Genentech, GlaxoSmithKline, Merck, Sanofi, and Novartis; has served in a consulting or advisory role for Amgen, Astellas, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Cougar Biotechnology, Dendreon, Enzon, Exelixis, Genentech, GlaxoSmithKline, Medivation, Merck, Millennium Pharmaceuticals, Inc., Novartis, Pfizer, Roche, Sanofi-Aventis, and Supergen; and has received research funding to institution from AstraZeneca, Genentech, GlaxoSmithKline, Clearbridge, and Sanofi. PL has received honoraria from Genentech, research funding from AbbVie, Alexion, Astellas, Astex, Novartis, and Pfizer, and travel/accommodation/expenses from Alexion, Astellas, Genentech, and Novartis; PL also has served in a leadership role for Alexion, Genentech, Novartis, and Boehringer Ingelheim, in a consulting or advisory role for AbbVie, Alexion, Astellas, Astex, Novartis, and Pfizer as well as on a speakers’ bureau for Genentech. JN has served in an employment and leadership role, has stock ownership, and has patents/royalties/other intellectual property for Gradalis; JN also has received honoraria from Amgen, has served on a speaker’s bureau and in a consulting or advisory role for Amgen, and has received travel/accommodation/expenses from Amgen, Baxalta, and Millennium Pharmaceuticals, Inc. EH has received honoraria from Bayer, Dendreon, and Sanofi, has served in a consulting or advisory role for Agensys, and has received research funding to institution from Agensys, Celgene, Celldex, Dendreon, Genentech/Roche, Inovio Pharmaceuticals, Millennium Pharmaceuticals, Inc., Seattle Genetics, and Tokai Pharmaceuticals. EK, TMM, EG, and MdM have no conflicts of interest to disclose. CP, EW, FZ, and YS are employees of Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited. KK and SS disclose prior employment by Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned
subsidiary of Takeda Pharmaceutical Company Limited. CP also has stock ownership of, and patents/royalties/other intellectual property for as well as travel/accommodation/expenses from Millennium Pharmaceuticals, Inc. EW has stock ownership of Eli Lilly and Company and Millennium Pharmaceuticals, Inc. FZ has stock ownership of Millennium Pharmaceuticals, Inc. YS has stock ownership of and has received travel/accommodation/expenses from Millennium Pharmaceuticals, Inc., and patents/royalties/other intellectual property for Millennium Pharmaceuticals, Inc., Novartis, and GlaxoSmithKline. JT has served in a consulting or advisory role for Amgen, Boehringer Ingelheim, Celgene, Chugai, Imclone, Lilly, Merck, Merck Serono, Millennium Pharmaceuticals, Inc., Novartis, Roche, Sanofi, and Taiho.
Statement of translational relevance

The phosphoinositide 3-kinase (PI3K) signaling pathway is frequently dysregulated in human cancer and activating mutations in \(PIK3CA \) (encoding the p110\(\alpha \) catalytic subunit of PI3K\(\alpha \)) are strongly implicated in oncogenic PI3K signaling. In addition, activation of PI3K pathway has also been implicated as a tumor cell survival mechanism in response to chemotherapy. PI3K\(\alpha \)-selective inhibitors, versus pan-PI3K pathway inhibitors, should provide more specific inhibition of PI3K\(\alpha \) while minimizing the side effects caused by non-selective blockade of other PI3K isoforms. This first-in-human phase I study investigated TAK-117, a potent and selective oral PI3K\(\alpha \) isoform inhibitor, in adult patients with advanced solid tumors. TAK-117 demonstrated an acceptable safety profile at the maximum tolerated doses and preliminary evidence of single-agent antitumor activity in this study. Additionally, results showed that intermittent dosing of TAK-117 (3 days per week) had improved tolerability versus continuous daily dosing of TAK-117. Intermittent TAK-117 dosing resulted in fewer transaminase elevations versus QD dosing and allowed for higher dose levels (thus, higher total weekly doses and exposure). This high-dose intermittent schedule may allow TAK-117 to be combined with other antitumor therapies, to effectively block the PI3K pathway activation that is a part of the adaptive survival mechanism of tumor cells following exposure to cellular stress and insults introduced by other drugs.
Abstract

Purpose: To evaluate the safety, maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of TAK-117 (MLN1117/INK1117), an investigational PI3Kα-selective inhibitor, in patients with advanced solid tumors.

Experimental Design: Seventy-one patients received oral TAK-117 once daily (QD, 100–300 mg \(n = 24\)), or 3 days per week (Mon–Wed–Fri [MWF], 200–1200 mg \(n = 27\); Mon–Tue–Wed [MTuW], 200–900 mg \(n = 20\)), in 21-day cycles. Dose escalation proceeded via a 3+3 design.

Results: TAK-117 QD dosing was associated with dose-limiting grade ≥3 alanine/aspartate aminotransferase (ALT/AST) elevations, resulting in a narrow range of tolerable doses (100–150 mg QD). With MWF/MTuW dosing, no dose-limiting ALT/AST elevations occurred until the MTD of 900 mg; total weekly dose was 2.6-fold that of 150 mg QD. Drug-related grade ≥3 adverse events occurred in 25%/22%/35% (including hyperglycemia in 0%/7%/15%) of QD/MWF/MTuW patients. TAK-117 (100–1200 mg) exhibited moderately fast oral absorption, a generally dose-proportional increase in exposure, and plasma half-life of ~11 hours. Total weekly exposures with 900 mg MWF/MTuW dosing were ~four times greater than with 150 mg QD. Skin pS6 expression was suppressed at ≥200 mg. There were 3/1/0 partial responses (QD/MWF/MTuW) and 5/7/5 patients had stable disease lasting ≥3 months (all PIK3CA mutated).

Conclusion: Intermittent dosing of TAK-117 had an acceptable safety profile and enabled higher doses and total weekly exposures versus QD dosing. While the potential for TAK-117 as single-agent therapy appears limited, further evaluation in combination approaches for advanced solid tumors is warranted.
Introduction

The phosphoinositide 3-kinase (PI3K) pathway is a frequently dysregulated signaling cascade in human cancer (1, 2). Activating mutations in PIK3CA (encoding the p110α catalytic subunit of PI3Kα) are strongly implicated in oncogenic PI3K signaling (2-4). The high frequency of PIK3CA mutations (~5% to 25% of solid tumors) suggests a therapeutic role for PI3Kα inhibitors in tumors driven by PI3K pathway activation (4-7). While several non-selective class I PI3K (pan-PI3K) pathway inhibitors are in development (8-15), in theory, PI3Kα-selective inhibitors should provide more specific inhibition of PI3Kα while minimizing the side effects caused by non-selective blockade of other PI3K isoforms. A higher selectivity, wider therapeutic window, and potentially improved benefit/risk profile would also provide opportunities for combining PI3Kα-selective inhibitors with other therapies.

TAK-117 (MLN1117/INK1117) is a potent and selective oral PI3Kα isoform inhibitor (IC\textsubscript{50} of 21 nM against PI3Kα) that has demonstrated >100-fold selectivity relative to other class I PI3K family members (PI3Kβ/γ/δ) and mTOR, and a high degree of selectivity against many other kinases. TAK-117 administration in PIK3CA-mutant tumor cell lines resulted in potent PI3K pathway inhibition, blockade of cellular proliferation, and apoptosis (16). Administration of TAK-117 also led to dose-dependent inhibition of tumor growth in murine xenograft models of human cancer (e.g., breast carcinoma) bearing PIK3CA oncogenic mutations, with corresponding inhibition of PI3K pharmacodynamic markers in tumor tissue (16). Preclinical anti-tumor activity of single-agent TAK-117 has been shown to be independent of dosing schedules and driven by total plasma exposures (17, 18). Conversely, TAK-117 was not efficacious in tumor models harboring PTEN and/or KRAS mutations (16). Preclinical studies showed TAK-117 to have low potential for disrupting glucose metabolism or for causing cardiac adverse events; in rats and monkeys, doses up to 50 mg/kg/day were well tolerated.
Phase I trial of the PI3Kα isoform inhibitor TAK-117

This phase I study of TAK-117 (NCT01449370) aimed to determine the maximum tolerated dose (MTD) and/or optimal biologic dose and dose-limiting toxicities (DLTs) when administered on a continuous daily (QD) or intermittent dosing schedule to patients with advanced solid tumors and known PIK3CA mutation status. Further objectives were to investigate safety/tolerability, pharmacokinetics, pharmacodynamics, and preliminary single-agent antitumor activity.

Patients and methods

Study design

This phase I dose-escalation study evaluated three dosing schedules of oral TAK-117 – QD or intermittent (Monday, Wednesday, Friday [MWF] or Monday, Tuesday, Wednesday [MTuW]) dosing in 21-day cycles until disease progression or unacceptable toxicities. TAK-117 was administered as capsules on an empty stomach, at approximately the same time each dosing day. Dose escalation followed a modified 3+3 design for all three dosing schedules. Dose-escalation and dose-modification guidelines are available in the Appendix.

The study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice. Institutional review boards approved all aspects of the study. All participants provided written informed consent.

Patients

Eligible patients were ≥18 years old, had locally advanced or metastatic solid tumors (excluding primary brain tumors) with evidence of disease progression per Response Evaluation Criteria in Solid Tumors [RECIST] v1.1 (19), had failed or were not eligible for standard-of-care therapy, had an Eastern Cooperative Oncology Group performance status of 0–1, and adequate organ function (Appendix). Prior assessment of
tumor \(PIK3CA\) mutation status was a requirement for study enrollment. This was performed by means of local testing, using archival tissue samples. Patients were eligible to enter the study regardless of the presence or absence of \(PIK3CA\) mutations. Once enrolled, all patients who received at least 1 dose of TAK-117 had their \(PIK3CA\) mutation status re-assessed at a central laboratory.

Assessments

The primary objective was determination of TAK-117 MTDs for daily and intermittent dosing schedules. The MTD was defined as the highest dose level at which no more than one DLT occurred during cycle 1 in a minimum of 6 patients. DLTs are defined as any of the following toxicities, provided that they were considered to be related to TAK-117 and that they occurred in cycle 1 (i.e., the first 21 days) following the patient’s first administration of TAK-117:

- Grade 3 nausea and/or vomiting, or diarrhea lasting >7 days despite optimal treatment
- Grade 2 fasting hyperglycemia lasting >14 days despite optimal treatment, or grade 3 fasting hyperglycemia lasting >24 hours despite optimal treatment
- Grade 3 rash lasting >7 days despite optimal treatment (all subjects could receive topical steroid treatment, oral antihistamines, and pulse oral steroids, if necessary)
- Other grade ≥3 non-hematologic toxicity considered clinically significant by the investigator
- Grade 3 thrombocytopenia with bleeding
- Grade 4 neutropenia (absolute neutrophil count ≤500) lasting >7 days in the absence of growth factor support
- Grade 4 neutropenia of any duration associated with fever ≥38.5°C and/or systemic infection
Phase I trial of the PI3Kα isoform inhibitor TAK-117

- Any other grade ≥4 hematologic toxicity
- Inability to administer ≥75% of the planned doses of TAK-117 within cycle 1 due to drug-related toxicity
- Any clinically significant occurrence that the investigators and sponsor agreed would place patients at an undue safety risk.

Safety was assessed throughout the study and according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) v4.03. Antitumor activity was evaluated every 3 cycles according to RECIST v1.1. Blood samples were collected on day 1 at the following timepoints: pre-dose (within 1 hour), 0.5, 1, 2, 4, and 8 hours post-dose, at 24 ± 2 hours post-dose (pre-dose on day 2), and at 48 ± 3 hours post-dose (pre-dose on day 3; MWF only); additional sampling timepoints are described in the Appendix. The plasma concentration of TAK-117 was measured using liquid chromatography mass spectrometry with an assay range of 1 to 1000 ng/mL. TAK-117 pharmacodynamics were evaluated via immunohistochemical analysis of phosphorylated S6 (pS6) expression at Ser235/236 in formalin-fixed paraffin-embedded sections of skin and tumor tissues. Skin biopsies from all patients and tumor biopsies from a subset of patients (who signed optional consent) were collected at screening and within 2–4 hours after dosing in week 2 of cycle 1 (QD dosing) or on day 1 of cycle 2 (intermittent dosing). A histochemical score (H-score) was assigned to each sample based on levels and areas of pS6 expression in the epidermis of a skin sample or tumor sample section as described previously (20).

Statistical methods

Patients evaluated for safety had received ≥1 dose of TAK-117. Response-evaluable patients had received ≥1 dose of TAK-117 and had ≥1 post-treatment response assessment. DLT-evaluable patients included those who either experienced a DLT, or
Phase I trial of the PI3Kα isoform inhibitor TAK-117 received ≥75% of the planned TAK-117 doses in cycle 1 and were viewed by the sponsor and investigators to have adequate safety data to conclude that no DLTs occurred in cycle 1. Pharmacokinetics-evaluable patients had received ≥1 dose of TAK-117 and had sufficient concentration–time data to calculate ≥1 pharmacokinetic parameter.

Antitumor activity was assessed by summarizing the objective response rate (ORR; complete response plus partial response [PR]) and clinical benefit rate (CBR; stable disease ≥3 months plus ORR). The safety population and pharmacodynamic parameters were summarized by dose group using descriptive statistics. Pharmacokinetic parameters were estimated using noncompartmental methods (WinNonlin® Professional v6.1+).

Results

Patients

From October 6, 2011 to April 21, 2014, 71 patients were enrolled from five centers in the USA, UK, and Spain (Table 1). In total, 24 patients were assigned to QD (six at 100 mg, six at 150 mg, eight at 200 mg, and four at 300 mg), 27 to MWF (three patients each at 200, 300, 400 mg, and 600 mg, 12 at 900 mg, and three at 1,200 mg), and 20 to MTuW (three patients each at 200 mg, 400 mg, and 600 mg, and 11 patients at 900 mg) dosing.

Sixty-one patients (86%) had PIK3CA-mutated tumors; the most common tumors were colorectal (25%) and breast (23%). Discontinuations before treatment completion (n = 69) were due to disease progression (n = 54), adverse events (AEs) (n = 9), subject decision (n = 4), or other reasons (n = 3).

DLTs and MTD

In total, 67 patients were DLT-evaluable: 24 QD, 25 MWF, and 18 MTuW patients. At data cut-off (September 14, 2015), cycle 1 DLTs, all grade 3 in severity, had occurred in
seven patients: two on the QD schedule (one at 200 mg: drug-induced hepatitis; one at 300 mg: elevated alanine aminotransferase [ALT] and aspartate aminotransferase [AST]), four on the MWF schedule (two at 900 mg: one with ALT and AST elevation, one with hyperosmolar state; two at 1,200 mg: one with nausea, vomiting, diarrhea and hyperglycemia, one with decreased appetite), and one on MTuW dosing (at 900 mg: nausea). The MTD of TAK-117 for the QD schedule was 150 mg. For both intermittent schedules, the MTD was 900 mg.

No patients in the 100 mg QD group and none of the initial three patients in the 200 mg QD group reported DLTs. Dose was escalated to 300 mg QD and one of four patients experienced DLTs of grade 3 AST elevation and grade 3 ALT elevation from day 8, with resolution to grade 1 intensity within 2 to 11 days. Following dose de-escalation to 200 mg, an additional five patients were treated and one patient experienced a DLT of grade 3 drug-induced hepatitis from day 25 to 28. All adverse events (AEs) resolved without sequelae. While tolerability of the 200-mg and 300-mg QD doses during cycle 1 were acceptable, AEs that occurred during cycles 2 and 3 resulted in dose interruptions and reductions. Thus, the dose was de-escalated to 150 mg, at which none of the six patients reported DLTs.

As QD dosing resulted in dose-limiting transaminase elevations, intermittent dosing was evaluated in both MWF and MTuW schedules. On the MWF dosing schedule, no DLTs were reported in the 200, 300, 400, and 600 mg MWF groups. At 900 mg, among the initial 6 patients treated, one patient experienced a DLT of grade 3 AST elevation and grade 3 ALT evaluation from day 19 to 44. Dose was escalated to 1200 mg and two of the three patients had DLTs (all were grade 3): one patient experienced nausea, vomiting, diarrhea, and hyperglycemia; and one patient experienced grade 3 decreased appetite. Following dose de-escalation to 900 mg, an additional 6 patients were treated and one
patient experienced grade 3 hyperosmolar state from day 13 to 26. All AEs resolved without sequelae.

There were no reports of DLTs in the 200, 400, and 600 mg MTuW groups. At 900 mg, none of the initial three patients reported a DLT but one patient experienced a dose reduction to 600 mg. Of the next three patients who enrolled at 900 mg, one patient experienced a DLT of grade 3 nausea from days 8–22 and a subsequent dose reduction to 600 mg; AE resolved without sequelae. Two of the five patients in the next enrollment for the 900 mg MTuW group experienced dose reduction to 600 mg. Dose escalation did not proceed in this schedule.

Treatment exposure

All 71 patients received at least one dose of TAK-117. Patients on the QD schedule received a median of 3 cycles (range 1–18); seven received ≥5 cycles. Those on the MWF schedule received a median of 3 cycles (range 1–15); nine patients received ≥5 cycles. In the MTuW arm, patients received a median of 3 cycles (range 1–27); four patients received ≥5 cycles. Median (range) treatment duration was 7.5 (1.0–53.1), 8.7 (0.7–44.7), and 7.4 (2.3–80.4) weeks on the QD, MWF, and MTuW schedules, respectively.

Safety

All patients reported at least one AE (most commonly nausea, vomiting, and fatigue; Tables 2 and 3), 89% of patients reported at least one drug-related AE (most commonly nausea, hyperglycemia, and vomiting), and 54% of patients reported at least one grade ≥3 AE (with drug-related grade ≥3 AEs in 27%). The most frequently observed grade ≥3 AEs were elevated liver transaminases (15% of patients) and hyperglycemia (8%); these were considered to be drug-related in 14% and 7% of patients, respectively (Table S1). Compared with QD dosing, intermittent dosing was associated with a lower incidence of grade ≥3 drug-related ALT/AST elevations (QD/MWF/MTuW, 21%/15%/5%).
but an increased incidence of grade ≥3 drug-related hyperglycemia (QD/MWF/MTuW, 0%/7%/15%).

Overall, serious AEs and discontinuations due to AEs were reported in 42% and 13% of patients, respectively, and these were drug-related in 10% and 6% of patients. Three patients each in the QD and MWF dosing groups died within 30 days of the last dose of study drug, primarily due to disease progression or disease burden; no deaths were attributed to TAK-117. Further details of the safety profile of TAK-117 are provided in the Appendix.

Pharmacokinetics and pharmacodynamics

Among 69 pharmacokinetics-evaluable patients, TAK-117 exhibited moderately fast oral absorption with a median time to maximum observed plasma concentration of 1.5 to 6 hours (Fig. 1A; Table S2). TAK-117 plasma exposures were generally dose-proportional over the 100–900 mg dose range albeit with a moderate-to-high inter-subject variability (%CV around AUC\textsubscript{inf}, 6.6–123). Based upon a preliminary power-model analysis to assess dose-linearity over the entire dose range (100–1,200 mg), the slope of the dose versus area under the plasma concentration–time curve from 0–24 hours (AUC\textsubscript{0-24h}) was 0.871 (95% confidence interval [CI], 0.627–1.115), suggesting that TAK-117 exhibits a slightly less than dose-proportional increase in exposures over the entire dose range (Fig. 1B).

The mean terminal half-life of TAK-117 was ~11 hours (range, 6–14 hours). There was no meaningful accumulation of TAK-117 with repeated dosing for any schedule (Table S3). Intermittent schedules achieved higher total weekly doses and exposures of TAK-117. In previously tested preclinical tumor models and dose-ranges, TAK-117 antitumor activity correlated linearly with plasma exposures and no evidence of an exposure threshold for efficacy was observed (17, 18). Based upon a preliminary pharmacokinetic model that simulated various dosing scenarios (Fig. 1C), compared to QD dosing, intermittent dosing schedules were predicted to achieve higher total weekly exposures of TAK-117 and a
Phase I trial of the PI3Kα isoform inhibitor TAK-117

longer duration above pharmacologically active thresholds based upon nonclinical exposure–antitumor response evaluation. The total weekly doses were 1,050 mg at an MTD of 150 mg QD and 2,700 mg at the recommended phase II dose of 900 mg MWF or MTuW. These doses were predicted to provide total weekly area under the curve at steady state (AUC_{ss}) values of ~105,000 ng*hour/mL for QD dosing and ~470,000 ng*hour/mL for the intermittent schedules. Dosing with the QD schedule resulted in ALT/AST elevations and prompted the evaluation of an alternative intermittent dosing schedule. The prediction of higher total weekly exposures with intermittent dosing was confirmed following completion of the 900 mg MTuW and MWF cohorts (Table S2). The administration of TAK-117 via the intermittent dosing schedule more than doubled the weekly dose and achieved higher weekly total exposures (maximize AUC_{ss}) than the QD schedule. In addition, based upon the pharmacokinetic model predictions, the duration above the preclinically estimated desirable average plasma concentration (C_{avg}) for QD dosing was approximately 16 hours/week versus approximately 75 hours/week for the two intermittent dosing schedules.

Sixty patients had sufficient skin samples for pharmacodynamic evaluation. TAK-117 at doses between 200 and 900 mg suppressed pS6 expression to varying degrees in skin biopsies (Fig. 2A). Of five paired tumor samples examined, a TAK-117-induced reduction in pS6 expression was seen in tumor biopsies taken from two patients on the 200 mg MWF/MTuW schedules (Fig. 2B).

Antitumor activity

Among 61 response-evaluable patients (QD, n = 20; MWF, n = 25; MTuW, n = 16), 53 patients had tumors with PIK3CA mutation. Four patients (all PIK3CA mutants) achieved a PR, three with breast cancer and one with gastric cancer (Fig. 3). The median duration of PR was 7 months (range, 3.6–12.2 months). Twenty-seven out of 61 patients (44%) were assessed by investigators to have stable disease. Seventeen patients (28%;
Phase I trial of the PI3Kα isoform inhibitor TAK-117

all *PIK3CA* mutants) had stable disease lasting ≥3 months. CBR was 34%; rates (40%, 32%, 31%) and median durations of clinical benefit (4.8, 4.8, 5.3 months) were comparable between the QD, MWF, and MTuW schedules, respectively.
Discussion

TAK-117 has demonstrated preclinical antitumor activity in tumor cell lines and xenograft models of human solid tumors bearing PIK3CA mutations (16). In this study of 71 patients with advanced solid tumors who had received prior treatments (86% of whom were PIK3CA mutated), three different dose schedules of TAK-117 were evaluated. The MTD of TAK-117 was established as 150 mg QD and 900 mg for both intermittent (MWF/MTuW) schedules.

The safety profile of TAK-117 was acceptable and consistent with profiles reported for other small-molecule PI3K inhibitors (10, 12, 13, 21-25). Drug-related grade ≥3 AEs occurred in 27% of patients, and discontinuations due to all-cause AEs in 13%. Common AEs included gastrointestinal and constitutional toxicities, along with changes in liver transaminases and blood glucose elevation, both of which were transient in nature.

Although TAK-117 administration resulted in hyperglycemia, a known side effect of PI3K inhibition (10, 12, 13, 21, 22, 24, 25), the rate of drug-related grade ≥3 hyperglycemia (7% of patients overall; 3% of patients receiving 150 mg QD or 900 mg intermittently) observed with TAK-117 was generally lower than rates previously reported with other PI3K inhibitors. Grade ≥3 hyperglycemia occurred more frequently in patients on the intermittent schedules (MWF, 7%; MTuW, 15%) versus QD dosing (0%). This higher rate of severe hyperglycemia with intermittently administered TAK-117 may reflect the higher weekly dose and exposure achieved relative to QD dosing. TAK-117-related grade ≥3 rash was not reported in the present study. In comparison, grade ≥3 rash occurred in 8% of patients who received continuous daily pictilisib (15 to 450 mg), including two DLTs at the 450 mg dose level (12). Grade ≥3 rash was also previously reported in 7% patients who received continuous daily buparsilib (24). Furthermore, TAK-117 was not associated with mood
Phase I trial of the PI3Kα isoform inhibitor TAK-117

alterations, as reported with buparlisib (21, 22). Further studies are required to fully assess the safety profile of TAK-117 relative to other pan-PI3K or selective PI3Kα inhibitors.

Preliminary pharmacokinetic simulations predicted that, compared with QD dosing at 150 mg, intermittent dosing (MTuW or MWF) at the MTD of 900 mg would achieve higher total weekly plasma exposures of TAK-117 and longer durations over which the \(C_{\text{avg}} \) would exceed the desirable pharmacologically active concentrations predicted from preclinical data. Patients treated with the QD schedule (150 mg MTD; weekly total dose of 1050 mg) demonstrated an increased rate of ALT/AST elevations and dose modifications/interruptions, thus prompting evaluation of alternative schedules to dose escalate and maximize AUC. Intermittent dosing at 900 mg (total weekly dose of 2700 mg) allowed a larger dose of TAK-117 to be administered to achieve higher total weekly exposures with improved tolerability, without increasing toxicity with the exception of grade \(\geq 3 \) hyperglycemia. Preclinical xenograft studies of TAK-117 suggested that its inhibitory effect on tumor growth is dependent on total systemic exposure levels, regardless of whether TAK-117 is given via continuous or intermittent dosing (17, 18). Furthermore, pharmacodynamic analysis in the present study indicated that the systemic exposures seen with intermittent dosing at 200–900 mg resulted in PI3K pathway modulation as evidenced by suppression of pS6 expression, thus confirming the on-target activity and dose range required for clinical response. Based on these data, intermittent dosing of TAK-117 (900 mg MTuW) has been taken forward into new trials.

Pharmacokinetics analysis demonstrated that the mean terminal half-life of TAK-117 ranged from 6 to 14 hours, and that there was no meaningful plasma accumulation of TAK-117 following repeated dosing in any of the dosing schedules. Earlier studies of other PI3K inhibitors (pan-PI3K and PI3Kα-specific) have mostly used QD schedules with the assumption that continuous suppression of the PI3K pathway is required for antitumor effects in \(PIK3CA \)-mutated tumors (12, 21-24). However, a recent report showed that
Phase I trial of the PI3Kα isoform inhibitor TAK-117

pulsatile administration (three times per week) of copanlisib increased the suppression of tumor growth compared with continuous dosing in a PIK3CA-mutated breast cancer model. The authors concluded that intermittent target inhibition may allow adequate inhibition of the PI3K pathway without causing excessive toxicity or chronic feedback reactivation of upstream receptors (26). Therefore, evaluation of clinical efficacy of the intermittent versus continuous dosing schedules of PI3K inhibition is warranted. Furthermore, intermittent dosing could potentially provide a better safety and tolerability profile, needed for dose durability and maintenance of patients on treatment.

Antitumor activity was observed with TAK-117 (4 PRs in 67 response-evaluable patients), but its single-agent efficacy was limited. Despite the higher exposure levels achieved with intermittent schedules, both CBRs (40%, 32%, and 31%) and median durations (4.8, 4.8, and 5.3 months) were comparable between the QD, MWF, and MTuW dosing groups. Although tumor types were diverse, the majority (86%) were confirmed to carry PIK3CA mutations. Assessment of PIK3CA mutation status before study enrollment was done by non-standardized, local testing. Blood-based assays have become available since this study was devised, and the use of such methods would enable improved assessments if the study were re-created today. The antitumor activity we observed with TAK-117 is in line with that of other PI3K inhibitors tested in similar patient populations. For example, daily dosing of single-agent buparlisib (12.5–150 mg) in 83 patients yielded one confirmed PR and a disease control rate of 41% (24). Similarly, PX-866 achieved stable disease in 22% and 53% of patients on intermittent (days 1 to 5 and 8 to 12 of a 28-day cycle) and QD dosing schedules, respectively (23).

It is possible that continuous PI3K pathway suppression (via daily dosing or pulsatile dosing with a tightly controlled off-time) is needed for clinical efficacy in tumors carrying PIK3CA mutations, where these activating mutations may function as a driver event in tumorigenesis. However, the requirement for PI3K target inhibition may be...
Phase I trial of the PI3Kα isoform inhibitor TAK-117

significantly different in a combination setting. Activation of the PI3K pathway in tumor cells may represent a compensatory survival mechanism in response to chemotherapy (27-29). Synergistic antitumor activity has been reported with PI3K inhibition in combination with treatments such as CDK 4/6 inhibition or antagonism of EGFR and HER3 (30, 31). The potential for combining PI3K inhibition with other therapies has also been acknowledged (32, 33) particularly in the context of prostate, breast, and ovarian cancer (27, 29, 34). An ongoing phase I/II trial plans will investigate the efficacy, safety, and tolerability of docetaxel with or without TAK-117 in patients with locally advanced or metastatic squamous or non-squamous non-small cell lung cancer (clinicaltrials.gov: NCT02393209). The MTuW schedule of TAK-117 will be used with the expectation that a high-dose, intermittent schedule would be more effective than QD dosing in blocking the adaptive response to chemotherapy insult.

In conclusion, the results of this study suggested that the safety profile of TAK-117 is acceptable and manageable. Intermittent dosing schedules achieved higher total weekly doses and exposures compared with QD dosing, generally without increasing toxicity. Although single-agent activity was limited, early signs of antitumor activity were observed and the CBR was encouraging. Our results support intermittent rather than continuous dosing of TAK-117, suggesting use of the drug in combination with other therapies for advanced tumors. PI3K inhibition is expected to block an adaptive survival mechanism to chemotherapy or other stress-inducing agents.
References

Author's contributions

Conception and design: DJ, JDB, CP, FZ, YS, EW, JT

Collection and assembly of data: DJ, JDB, EG, PL, MdM, EK, YS, CP, KK, JT

Data analysis and interpretation: DJ, JDB, EH, TM, PL, FZ, YS, SS, CP, JN, JT

Provision of study materials or patients: DJ, JDB, EH, TM, JT

Manuscript writing: All authors

Final approval of manuscript: All authors

Financial support: Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited.

Acknowledgments

The authors would like to thank the patients who participated in this study and their families, as well as staff at all investigational sites. JDB acknowledges support from the Experimental Cancer Medicine Centres (ECMC) network in the United Kingdom, a Cancer Research UK Centre grant and a Biomedical Research Centre grant to the Royal Marsden. The authors also acknowledge Dawn L. Lee of FireKite (an Ashfield Company, part of UDG Healthcare plc), who provided medical writing assistance during the development of this manuscript, which was funded by Millennium Pharmaceuticals, Inc., in compliance with Good Publication Practice 3 ethical guidelines (Battisti et al, Ann Intern Med 2015;163:461-4).
Table 1. Patient characteristics and baseline demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TAK-117</th>
<th>TAK-117 QD</th>
<th>MWF 200–1,200 mg</th>
<th>TAK-117 MTuW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>100–300 mg</td>
<td>1,200 mg</td>
<td>200–900 mg</td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>58.0</td>
<td>58.5</td>
<td>59.0</td>
<td>56.0</td>
</tr>
<tr>
<td>Gender male:female, %</td>
<td>31:69</td>
<td>33:67</td>
<td>22:78</td>
<td>40:60</td>
</tr>
<tr>
<td>Race, n (%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>65 (92)</td>
<td>23 (96)</td>
<td>24 (89)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>Black/African American</td>
<td>2 (3)</td>
<td>0</td>
<td>1 (4)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Asian</td>
<td>3 (4)</td>
<td>1 (4)</td>
<td>1 (4)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Other/not reported</td>
<td>1 (1)</td>
<td>0</td>
<td>1 (4)</td>
<td>0</td>
</tr>
<tr>
<td>PIK3CA mutation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>61 (86)</td>
<td>21 (88)</td>
<td>24 (89)</td>
<td>16 (80)</td>
</tr>
<tr>
<td>Wild-type</td>
<td>8 (11)</td>
<td>2 (8)</td>
<td>2 (7)</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (3)</td>
<td>1 (4)</td>
<td>1 (4)</td>
<td>0</td>
</tr>
<tr>
<td>Number of prior therapies, median (range)</td>
<td>5.0</td>
<td>6.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Tumor type, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>18 (25)</td>
<td>7 (29)</td>
<td>6 (22)</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Breast</td>
<td>16 (23)</td>
<td>9 (38)</td>
<td>5 (19)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>9 (13)</td>
<td>0</td>
<td>7 (26)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Lung</td>
<td>6 (8)</td>
<td>2 (8)</td>
<td>1 (4)</td>
<td>3 (15)</td>
</tr>
</tbody>
</table>
Phase I trial of the PI3Kα isoform inhibitor TAK-117

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>n (M)</th>
<th>n (F)</th>
<th>n (M)</th>
<th>n (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and neck</td>
<td>5 (7)</td>
<td>2 (8)</td>
<td>1 (4)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Gastric</td>
<td>2 (3)</td>
<td>2 (8)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Endometrial</td>
<td>3 (4)</td>
<td>0</td>
<td>2 (7)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Prostate</td>
<td>1 (1)</td>
<td>0</td>
<td>0</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Renal</td>
<td>1 (1)</td>
<td>1 (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other*</td>
<td>10 (14)</td>
<td>1 (4)</td>
<td>5 (19)</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Median time since initial diagnosis, years (range)</td>
<td>3.8 (0.8–28.2)</td>
<td>3.6 (1.0–28.2)</td>
<td>3.8 (0.8–20.4)</td>
<td>3.9 (0.9–25.8)</td>
</tr>
</tbody>
</table>

*Includes squamous cell carcinoma, cervical cancer, squamous cell carcinoma of the tonsil, ocular melanoma, adenoid cystic carcinoma of the hard palate, metastatic poorly differentiated transitional cell carcinoma of the bladder, serous carcinoma of fallopian tube, cervical squamous cell carcinoma, transitional cell carcinoma of the bladder, and penile carcinoma (n = 1 each).

MTuW, Monday-Tuesday-Wednesday; MWF, Monday-Wednesday-Friday; QD, once daily.
Table 2. Summary of safety profiles of TAK-117 by dosing schedule

<table>
<thead>
<tr>
<th>AE, n (%)</th>
<th>TAK-117 QD 100 to 300 mg</th>
<th>TAK-117 MWF 200 to 1,200 mg</th>
<th>TAK-117 MTuW 200 to 900 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>N = 71</td>
<td>n = 24</td>
<td>n = 27</td>
</tr>
<tr>
<td>All-cause</td>
<td>71 (100)</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Drug-related</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
</tr>
<tr>
<td>Grade ≥3</td>
<td>38 (54)</td>
<td>13 (54)</td>
<td>6 (25)</td>
</tr>
<tr>
<td>SAE</td>
<td>30 (42)</td>
<td>11 (46)</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Discontinuations due to AEs</td>
<td>9 (13)</td>
<td>4 (17)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Dose modifications/ interruptions due to AEs</td>
<td>29 (41)</td>
<td>20 (28)</td>
<td>11 (46)</td>
</tr>
<tr>
<td>On-study deaths*</td>
<td>6 (8)</td>
<td>0</td>
<td>3 (13)</td>
</tr>
</tbody>
</table>
*Within 30 days of last dose of study drug.

AE, adverse event; MTuW, Monday-Tuesday-Wednesday; MWF, Monday-Wednesday-Friday; QD, once daily; SAE, serious adverse event.
Table 3. Summary of most common any cause AEs by dosing schedule (any grade in ≥20% and grade ≥3 in ≥5% of patients overall)

<table>
<thead>
<tr>
<th>AE, n (%)</th>
<th>Total</th>
<th>100 to 300 mg</th>
<th>200 to 1,200 mg</th>
<th>200 to 900 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All grades</td>
<td>Grade ≥3</td>
<td>All grades</td>
<td>Grade ≥3</td>
</tr>
<tr>
<td>Nausea 43 (61)</td>
<td>3 (4)</td>
<td>14 (58)</td>
<td>1 (4)</td>
<td>15 (56)</td>
</tr>
<tr>
<td>Vomiting 36 (51)</td>
<td>2 (3)</td>
<td>8 (33)</td>
<td>1 (4)</td>
<td>16 (59)</td>
</tr>
<tr>
<td>Fatigue 34 (48)</td>
<td>3 (4)</td>
<td>12 (50)</td>
<td>1 (4)</td>
<td>12 (44)</td>
</tr>
<tr>
<td>Diarrhea 33 (46)</td>
<td>2 (3)</td>
<td>12 (50)</td>
<td>0</td>
<td>12 (44)</td>
</tr>
<tr>
<td>Hyperglycemia 26 (37)</td>
<td>6 (8)</td>
<td>7 (29)</td>
<td>0</td>
<td>10 (37)</td>
</tr>
<tr>
<td>Decreased appetite 24 (34)</td>
<td>2 (3)</td>
<td>8 (33)</td>
<td>0</td>
<td>10 (37)</td>
</tr>
<tr>
<td>Constipation 25 (35)</td>
<td>0</td>
<td>9 (38)</td>
<td>0</td>
<td>9 (33)</td>
</tr>
<tr>
<td>Elevated AST 24 (34)</td>
<td>5 (7)</td>
<td>10 (42)</td>
<td>3 (13)</td>
<td>10 (37)</td>
</tr>
<tr>
<td>Elevated ALT 19 (27)</td>
<td>6 (8)</td>
<td>9 (38)</td>
<td>3 (13)</td>
<td>7 (26)</td>
</tr>
<tr>
<td>Anemia 15 (21)</td>
<td>2 (3)</td>
<td>4 (17)</td>
<td>0</td>
<td>9 (33)</td>
</tr>
<tr>
<td>Cough 14 (20)</td>
<td>0</td>
<td>5 (21)</td>
<td>0</td>
<td>6 (22)</td>
</tr>
<tr>
<td>Hypokalemia 14 (20)</td>
<td>1 (1)</td>
<td>3 (13)</td>
<td>0</td>
<td>7 (26)</td>
</tr>
<tr>
<td>Respiratory failure 4 (6)</td>
<td>4 (6)</td>
<td>1 (4)</td>
<td>1 (4)</td>
<td>3 (11)</td>
</tr>
</tbody>
</table>
Phase I trial of the PI3Kα isoform inhibitor TAK-117

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; MTuW, Monday-Tuesday-Wednesday; MWF, Monday-Wednesday-Friday; QD, once daily; SAE, serious adverse event.
FIGURE LEGENDS

Figure 1. Pharmacokinetic analyses of TAK-117: (A) mean TAK-117 plasma concentration–time profile by dose level on day 1 of cycle 1; (B) dose-proportionality plot of TAK-117 dose versus AUC$_{0-24h}$; and (C) simulated TAK-117 plasma concentration–time profiles over a dosing week for the QD and intermittent dosing schedules. AUC$_{0-24h}$, area under the TAK-117 plasma concentration–time curve from 0–24 hours; C$_{avg}$, average TAK-117 plasma concentration; CI, confidence interval; MTuW, Monday-Tuesday-Wednesday; MWF, Monday-Wednesday-Friday; QD, once daily.

Figure 2. Pharmacodynamic effects of TAK-117: (A) Box-and-whisker plot showing changes from baseline in pS6 expression in skin biopsies (boxes, interquartile distance [Q1–Q3]; bars, median; whiskers, 10th and 90th percentiles; circles, observations outside 90% distribution interval); and (B) representative images of tumor biopsies from patients dosed at 200 mg on the intermittent schedules showing decreased pS6 expression (indicated by the immunohistochemistry H-score provided below each image). MTuW, Monday-Tuesday-Wednesday; MWF, Monday-Wednesday-Friday. Bar equals 200 mM.

Figure 3. Treatment duration and response in patients treated with TAK-117 100–1200 mg.

CBR, clinical benefit rate; Med Dur, median duration of clinical benefit; MTuW, Monday-Tuesday-Wednesday; MWF, Monday-Wednesday-Friday; NSCLC, non-small cell lung cancer; PD, progressive disease; PR, partial response; QD, once daily; SD, stable disease.
Figure 2

A

![Box plot showing % change from baseline for different doses of drug.](image)

- 100 mg (n = 6)
- 150 mg (n = 6)
- 200 mg (n = 12)
- 300 mg (n = 4)
- 400 mg (n = 4)
- 600 mg (n = 5)
- 900 mg (n = 21)
- 1,200 mg (n = 2)

B

![Pre and Post images for 200 mg MTuW and 200 mg MWF.](image)

- 200 mg MTuW
- Pre: 160
- Post: 46

- 200 mg MWF
- Pre: 70
- Post: 12
TAK-117 dose (mg) vs Treatment Duration vs Maximum Target Lesion Decrease

- **QD**: n = 20* (20 to 300 mg)
 - CBR: n = 8 (40%)
 - Med Dur 4.8 months (3 to 12.2)

- **MWF**: n = 25* (200 to 1,200 mg)
 - CBR: n = 8 (32%)
 - Med Dur 4.8 months (3.5 to 10.5)

- **MTUW**: n = 16* (200 to 900 mg)
 - CBR: n = 5 (31%)
 - Med Dur 5.3 months (3.5 to 18.6)

*Number of patients evaluated for response

- PIK3CA wild-type; all other patients PIK3CA (+)

CRR: PR plus SD ≥3 months

Downloaded from clincancerres.aacrjournals.org on November 1, 2017. © 2017 American Association for Cancer Research.
A First-in-Human, Phase I, Dose-Escalation Study of TAK-117, a Selective PI3Kα Isoform Inhibitor, in Patients with Advanced Solid Malignancies

Dejan Juric, Johann S de Bono, Patricia M. LoRusso, et al.

Clin Cancer Res Published OnlineFirst May 10, 2017.