Noninvasive Imaging of Cycling Hypoxia in Head and Neck Cancer Using Intrinsic Susceptibility MRI

Rafal Panek1,2,3, Liam Welsh2,3, Lauren C.J. Baker1,2, Maria A. Schmidt1,2,3, Kee H. Wong1,2,3, Angela M. Riddell1,2,3, Dow-Mu Koh1,2,3, Alex Dunlop1,2,3, Dualta Mcquaid2,3, James A. d’Arcy1,2,3, Shreerang A. Bhide2,3, Kevin J. Harrington2,3, Christopher M. Nutting3, Georgina Hopkinson3, Cheryl Richardson3, Carol Box2, Suzanne A. Eccles2, Martin O. Leach1,2,3, Simon P. Robinson1,2, and Kate L. Newbold2,3

Abstract

Purpose: To evaluate intrinsic susceptibility (IS) MRI for the identification of cycling hypoxia, and the assessment of its extent and spatial distribution, in head and neck squamous cell carcinoma (HNSCC) xenografts and patients.

Experimental Design: Quantitation of the transverse relaxation rate, R2*, which is sensitive to paramagnetic deoxyhemoglobin, using serial IS-MRI acquisitions, was used to monitor temporal oscillations in levels of paramagnetic deoxyhemoglobin in human CALR xenografts and patients with HNSCC at 3T. Auto-covariance and power spectrum analysis of variations in R2* was performed for each imaged voxel, to assess statistical significance and frequencies of cycling changes in tumor blood oxygenation. Pathologic correlates with tumor perfusion (Hoechst 33342), hypoxia (pimonidazole), and vascular density (CD31) were sought in the xenografts, and dynamic contrast-enhanced (DCE) MRI was used to assess patient tumor vascularization. The prevalence of fluctuations within patient tumors, DCE parameters, and treatment outcome were reported.

Results: Spontaneous R2* fluctuations with a median periodicity of 15 minutes were detected in both xenografts and patient tumors. Spatially, these fluctuations were predominantly associated with regions of heterogeneous perfusion and hypoxia in the CALR xenografts. In patients, R2* fluctuations spatially correlated with regions of lymph nodes with low Ktrans values, typically in the vicinity of necrotic cores.

Conclusions: IS-MRI can be used to monitor variations in levels of paramagnetic deoxyhemoglobin, associated with cycling hypoxia. The presence of such fluctuations may be linked with impaired tumor vasculature, the presence of which may impact treatment outcome. Clin Cancer Res; 1–9. ©2017 AACR.

Introduction

Understanding the tumor microenvironment is essential for the delivery of personalized cancer treatment (1–3). Hypoxia, resulting from an imbalance between oxygen delivery and consumption, is an important component of the tumor microenvironment that influences the response to both radiotherapy and chemotherapy (2, 4, 5). Tumor hypoxia is a well-established cause of treatment resistance, and adversely affects the prognosis of head and neck squamous cell carcinoma (HNSCC; ref. 6). Furthermore, targeting tumor hypoxia has been validated as a therapeutic strategy in HNSCC (6, 7), and its modification during standard radiotherapy can improve outcomes in terms of locoregional control, disease-specific survival, and overall survival (8).

Historically, the low oxygen tension associated with tumors was considered to be a consequence of chronic or diffusion-limited hypoxia (9), and acute or perfusion-limited hypoxia (10). It is now clear that this is an oversimplification and that the tumor microenvironment is highly dynamic and contains subpopulations of cancer cells exposed to continuously changing gradients of oxygen, nutrients, and pH (11). These microenvironmental components can promote genomic instability within cancer cells, providing an overall selective advantage for malignant growth (12). For example, tumors may contain cells that have been differentially exposed to hypoxia for minutes to hours and then reoxygenated (13–15). This process can recur, leading to “cycling” hypoxia (16–18). Cycling hypoxia arises from variations in red blood cell (RBC) flux through the abnormal tumor vasculature (16, 18, 19). Several factors may contribute to such fluctuations, including arteriolar vasomotion (20, 21), rapid vascular modeling (22), disorganized vascular hierarchy (23, 24), or increased transcapillary permeability (25).

Experimental evidence suggests that hypoxia and anoxia can alter tumor cell-cycle checkpoint control and the sensing and...
repair of DNA damage (12, 26, 27). Preclinical studies have shown that the homologous recombination DNA repair pathway is suppressed by chronic hypoxia, whereas DNA damage–associated checkpoint cell-cycle arrest and nonhomologous end joining are stimulated by acute hypoxia (12, 27). These factors lead to radioresistance, decreased delivery of cytotoxics, and increased metastatic potential. Therefore, detecting the magnitude and distribution of acutely and chronically hypoxic tumor cell subpopulations in situ may provide prognostic and predictive biomarkers for the treatment of HNSCC. Quantification of the transverse relaxation rate, R_2^*, using intrinsic susceptibility MRI can be used to serially monitor variations in levels of paramagnetic deoxyhemoglobin, associated with cycling hypoxia, both in HNSCC xenografts and patients on a clinical 3T system. Such fluctuations are predominantly associated with regions of impaired tumor vasculature, the presence of which may be linked to a poorer outcome.

Translational Relevance

The presence of cycling hypoxia is a key determinant of radioresistance, impaired drug delivery, and increased metastatic potential in head and neck squamous cell carcinoma (HNSCC). Noninvasive imaging strategies to identify and assess the magnitude and distribution of acutely hypoxic tumor cell subpopulations in situ may provide prognostic and predictive biomarkers for the treatment of HNSCC. Quantification of the transverse relaxation rate, R_2^*, using intrinsic susceptibility MRI can be used to serially monitor variations in levels of paramagnetic deoxyhemoglobin, associated with cycling hypoxia, both in HNSCC xenografts and patients on a clinical 3T system. Such fluctuations are predominantly associated with regions of impaired tumor vasculature, the presence of which may be linked to a poorer outcome.

Subsequently, the preclinical IS-MRI methodology was translated to a clinical pilot study of patients with locally advanced HNSCC, also imaged at 3T.

Materials and Methods

Preclinical imaging

Experiments were performed in compliance with Home Office licenses issued under the UK Animals (Scientific Procedures) Act 1986 following local ethical approval, the United Kingdom National Cancer Research Institute guidelines for animal welfare in cancer research (34) and with the ARRIVE guidelines (35). Adult female athymic NCr nu/nu mice (n = 5, 7–8 weeks old, Charles River Laboratories) were injected subcutaneously in the flank with 5×10^7 human CALR HNSCC cells, stably resistant to EGFR tyrosine kinase inhibitors. The CALR xenograft doubling time in vivo is approximately 4 days (36). Tumor volume was monitored using calipers and the formula for an ellipsoid, ($\pi/6 \times L \times W \times D$), where L, W, and D are the largest orthogonal dimensions of the ellipsoid. Tumors were imaged at volumes of approximately 500 mm3.

MRI was performed on a 3T clinical scanner (Philips Achieva, Philips Medical Systems) using a dedicated preclinical asymmetric high-resolution three element receive coil (*Mouse Hotel*, Philips), enabling simultaneous measurements of up to 3 animals. Mice were anesthetized with a 10 mL/kg intraperitoneal injection of fentanyl citrate (0.315 mg/mL) plus fluanisone (10 mg/mL; Hypnorm; Janssen Pharmaceutical Ltd.), midazolam (5 mg/mL; Hypnovel; Roche), and water (1:1:2). Anesthetized mice (two per scanning session) were positioned with tumors immobilized at the center of the coil elements (Supplementary Fig. S1). Mouse core body temperature was maintained by a built-in heating system within the coil. A round-end cylinder phantom containing 1.5 mmol/L gadoterate meglumine (Dotarem, Guerbet) in saline was positioned in the third coil element and used to monitor MR system stability (Supplementary Fig. S1). Anatomic coronal and axial T_2-weighted images were first obtained to localize the tumor. A 2D gradient echo sequence with 6 echo times (temporal resolution: 30 seconds, $FA = 24^\circ$, $TE = 4.92–29.52$ ms in increments of 4.92 ms, $TR = 250$ ms, $FOV = 200 \times 200$ mm2, 3 slices, voxel size: $0.3 \times 0.3 \times 1.5$ mm3) was then used to scan continuously over 50 minutes, providing 100 time points. The total scanning time was 65 minutes.

Pathologic assessment of tumor perfusion, vascularization, and hypoxia

The hypoxia marker pimonidazole (60 mg/kg, Hypoxyprobe) was administered intraperitoneally to mice bearing CALR xenografts 1 hour before the MRI scan, to allow for maximal bioreduction in hypoxic tumor regions. Following MRI, Hoechst 33342 (15 mg/kg; Sigma-Aldrich), a marker of perfused vessels, was injected via a lateral tail vein (37, 38). After 1 minute, tumors were rapidly excised and flash frozen over liquid nitrogen. Fluorescence signals from Hoechst 33342 and reduced pimonidazole adducts bound with mouse monoclonal FITC-conjugated antibodies were detected on whole tumor 10-μm thick frozen sections, cut in the same plane as for the MRI, using a motorized scanning stage (Prior Scientific Instruments) attached to a BX51 microscope (Olympus Optical), driven by image analysis software (CellP, Soft Imaging System) as...
described previously (38). Vessel density was then assessed through detection of CD31 on the same sections using rat anti-mouse CD31 antibodies (BD Biosciences, 1:100) and Alexa 546–conjugated goat anti-rat IgG antibody (Invitrogen, 1:500). Tumor hypoxia, perfusion, and vessel density were quantified as described previously (38).

Clinical imaging

Ten patients with untreated, histologically proven HNSCC were scanned twice (24–168 hours apart) prior to initiation of treatment. Written informed consent was obtained from all patients, which was approved by the Institutional Research Review Board (CCR 3970) and the NHS Research Ethics Committee (REC number 13/LO/0628). MRI was performed at 3T (MAGNETOM Skyra, Siemens Healthcare) using a 20-channel head and neck coil. Patients were aligned in a supine position with slight neck extension using a standard headrest and lateral cushions for improved stabilization. Anatomic coronal and axial T2-weighted images were first acquired to assess the extent of the disease and aid planning of functional imaging. Subsequently, a 2D gradient echo sequence with 6 echo times (temporal resolution: 30 seconds, FA = 24°, TE = 4.92–29.52 ms in increments of 4.92 ms, TR = 250 ms, FOV = 240 × 240 mm², 3 slices, voxel size: 0.9 × 0.9 × 2.5 mm³) was used to scan continuously for 1 hour (120 time points). Finally, DCE MRI was performed using an axial 3D FFE sequence (FA = 3/18°, TE/TR = 2.46/4.56 ms, FOV = 256 × 198 mm², 24 slices, 1.5 × 1.5 × 2.5 mm³ voxel, temporal resolution: 2.9 seconds), during which 0.2 mg/kg gadoterate meglumine was injected as a bolus. The total scanning time was 75 minutes. A blood sample was taken for a full blood count prior to each MRI examination, whereas microscopic disease included nodal areas at risk of harboring microscopic disease dependent on the site of the primary tumor. Patients with evidence of persistent, progressive, or relapsed disease, arising within 12 months of completion of treatment, were classed as nonresponders. The analysis of the clinical MRI data was blinded to the treatment outcome.

Signal processing

R₂* maps were calculated for each time point using Matlab (MathWorks), and the gradient echo image signal intensity decay was fitted on a voxel-wise basis to a monoexponential model using a least-squares fit method (30). A nonrigid image registration [MIRT - Medical Image Registration Toolbox for Matlab, sum-of-squared-differences similarity measure (39)] was performed to correct for any motion in the clinical examinations. The shortest echo time (TE = 4.6 ms) images were used to calculate deformation matrices, which were subsequently applied to corresponding R₂* maps [R₂* (t)MOCO]. The residual motion was inspected using cine loops and image intensity time traces S(t)MOCO generated for each tumor volume of interest (50-mm line profiles in two orthogonal directions).

Corrected time series were analyzed for all volumes of interest (VOI) voxels to test for the presence of nonrandom fluctuations, using a power spectrum analysis. The following processing steps, previously described by Baudelet and colleagues (31, 40), were performed: (i) linear trend subtraction; (ii) calculation of autocovariance functions; (iii) calculation of power spectral density; and (iv) χ² test of power coefficients to test whether fluctuations were different from the Gaussian noise. No data filtering or windowing was used. Coefficients in the frequency range of 0 to 0.005 Hz, characteristic for cycling hypoxia (14, 17, 20, 31, 33), were considered significant. Higher frequency noise–dominated coefficients were not included in the analysis. Significant non-Gaussian R₂* fluctuations (one or more coefficient above P = 0.05 significance threshold) were spatially mapped using binary maps (Fig. 1). The total numbers of fluctuating voxels and percentage of fluctuating voxels in the imaged volume (fluctuating volume percentage) were determined for each VOI.

DCE MRI was used to noninvasively investigate the vascularization of the patient tumors. Pharmacokinetic modeling was performed using MRIW (41) software and the extended Kety model (42) and a population-based arterial input function (43). The volume transfer constant between blood plasma and extracellular extravascular space, Ktrans (min⁻¹), and enhancing fractions, EF, were calculated for each voxel (41).

VOIs from each CALR® xenograft were manually delineated using in-house software developed in Matlab. Patient VOIs, including primary and nodal tumor sites, were manually delineated using the Pinnacle3 (Philips Healthcare) treatment planning system (TPS). Voxel-matched parameter maps were generated and exported using the TPS with 1 × 1 × 2.5 mm voxel resolution. This allowed for spatial investigation of perfusion and permeability in fluctuating and nonfluctuating tumor regions. Mean values of R₂* and Ktrans were calculated for enhancing regions of tumors and compared with fluctuating and nonfluctuating subvolumes. Correlations between whole tumor median Ktrans, R₂* VOI values, and fluctuating volume percentage were also tested.

Treatment and outcomes in the clinical cohort

All patients received radical radiotherapy with concomitant chemotheraphy (cisplatin 100 mg/m² or carboplatin, AUC5, day 1 and 29) according to institutional protocols. Macroscopic and microscopic disease received 65 or 54 Gy in 30 fractions, respectively, using intensity-modulated radiotherapy with a simultaneous integrated boost. Macroscopic disease was defined as the gross tumor identifiable on pretreatment images and clinical examination, whereas microscopic disease included nodal areas

Statistical analysis

The Shapiro–Wilk test was used to evaluate distribution normality of measured parameters. The χ² test of power coefficients (frequency range, 0–0.005 Hz) was used to assess whether the fluctuations were different from the Gaussian noise. The paired t test was used to compare the mean values of R₂*, Ktrans (responders vs. nonresponders, primary vs. lymph nodal tumors), and fluctuating volume percentage (responders vs. nonresponders, fluctuating volume percentage in MRI vs. MR2). Kendall tau (τ) was used to test for correlation between the mean fluctuating volume percentage, R₂*, and vascular/hypoxia parameters (Hoechst 33342, pimonidazole adduct fractions, Ktrans). A P value of 0.05 was chosen as the criterion for statistical significance in all tests and adjusted to account for multiple correlation comparisons. Statistical analysis was performed using the Matlab Statistics Toolbox.

Results

Preclinical findings

The spatial distribution and volume percentage of spontaneous R₂* fluctuations. The range of CALR® tumor volumes measured
using T2-weighted images was 0.48 to 0.94 cm³ with a median of 0.59 cm³. The median baseline R_2^* for the CALR xenografts was 32 s⁻¹ (range: 26–50 s⁻¹) with elevated values commonly found at the periphery of tumors (Fig. 1A). Significant spontaneous R_2^* spatial variations were detected in all the CALR xenografts ($n = 5$), with an average fluctuating volume percentage of 8% (Table 1). Figure 2B illustrates the spatial distribution of fluctuations in the xenograft cohort. Examples of power spectra measured for representative voxels in fluctuating and nonfluctuating regions of CALR xenografts, and adjacent muscle, are shown in Supplementary Fig. S2.

Perfusion and hypoxia in fluctuating subregions of CALR xenografts. Composite images showing the distribution of Hoechst 33342, pimonidazole adducts, and CD31 for each CALR xenograft are shown in Fig. 2C. Perfused vasculature was predominantly associated with the tumor periphery, with more hypoxic and/or avascular regions toward the core. The mean values of perfused and hypoxic fractions were 10.4% (range, 5.1–14.2) and 7% (range, 6.5–20.9), respectively.

There was a negative trend ($\tau = -0.8, P = 0.08$, Supplementary Fig. S3) between median-fluctuating and perfused tumor fractions. There was no correlation between median-fluctuating volume percentage and chronic hypoxia, identified with pimonidazole staining ($\tau = -0.2, P = 0.817$). Significant R_2^* fluctuations were apparent in regions of the tumor with a heterogeneous distribution of hypoxic and perfused parts, although absent in well-perfused areas (Fig. 2B). There was no correlation between baseline R_2^* and pimonidazole or Hoechst 33342 staining ($\tau = 0.1, P = 1$ and $\tau = 0.01, P = 1$, respectively, Supplementary Fig. S3).

Clinical findings

The spatial distribution and volume percentage of spontaneous R_2^* fluctuations. A total of 7 primary sites and 11 lymph nodes were imaged and outlined for the purpose of the study. Patient and treatment characteristics are summarized in Table 2. The range of measured Hct was 0.283 to 0.459, and the mean value was 0.4. Images revealed high spatial heterogeneity in metastatic lymph nodes (Fig. 3). The median baseline R_2^* was 43 s⁻¹ (range: 35–56 s⁻¹) for lymph nodes and 54 s⁻¹ (range: 47–56 s⁻¹) for primary tumors, which differed significantly ($P < 0.01$). Elevated R_2^* values were commonly found at the periphery of lymph nodes (Fig. 4A). Primary sites were significantly
affected by patient motion, whereas lymph nodes were fairly stationary (Supplementary Fig. S4). Three primary tumors were excluded from the analysis due to excessive motion that could not be compensated for. Significant R²/C₃ fluctuations were detected in 4 primary sites and 10 lymph nodes in 9 of 10 patients, with the fluctuating volume percentage varying between 0% and 23% (Table 2). Examples of nodal VOI fluctuation maps obtained in two MRI sessions (48 hours apart) are shown in Fig. 4. Examples of power spectra measured for representative voxels in fluctuating and nonfluctuating parts of human HNSCC tumors, and adjacent muscle, are shown in Supplementary Fig. S5.

Mean values of fluctuating volume percentage measured in the two MRI visits did not differ statistically (P = 0.12). The distribution of fluctuating volume percentage in the patient cohort was positively skewed and not normal (P < 0.01). Most of the observed significant frequencies were in the low-frequency range <0.003 Hz (<1 cycle/5.5 minutes) with a median frequency of 0.0011 Hz (1 cycle/15 minutes).

Ktrans and R²/C₃ in fluctuating and nonfluctuating parts of patient tumors. The median Ktrans values calculated for patient primary and nodal tumors were 0.127 and 0.182 min⁻¹, respectively. A rim-enhancing pattern, with no or low contrast uptake in the center, was observed in 7 of 11 nodes. The mean nodal-enhancing fraction was 0.86. There was no difference in enhancing fraction values between fluctuating and nonfluctuating parts of nodal tumors (P = 0.84). Examples of fluctuation maps with corresponding Ktrans maps are shown in Figs. 3 and 4. Nonrandom fluctuations were detected in areas of lymph nodes with low Ktrans values (Figs. 3, IV and Fig. 4), often in the vicinity, but not in the center, of cystic or necrotic

![Figure 2.](image)

A and B, T₂-weighted axial MRI images (A) and corresponding binary maps showing the spatial distribution of spontaneous non-Gaussian R²/C₃ fluctuations (B) within tumor ROIs (white voxels) for CAL2 HNSCC xenografts (central slices). C, Composite images of the corresponding tumor sections showing the distribution of Hoechst 33342 (perfusion, blue), pimonidazole adducts (hypoxia, green), and CD31 (endothelial cell expression, red).

Table 2. Summary of patient tumor characteristics

<table>
<thead>
<tr>
<th>Pt</th>
<th>Primary site</th>
<th>P vol (cc)</th>
<th>R² (s⁻¹)</th>
<th>Ktrans (min⁻¹)</th>
<th>MRT Fluct. vol. (%)</th>
<th>MR2 Fluct. vol. (%)</th>
<th>LN vol (cc)</th>
<th>R² (s⁻¹)</th>
<th>Ktrans (min⁻¹)</th>
<th>MRT Fluct. vol. (%)</th>
<th>MR2 Fluct. vol. (%)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oropharynx</td>
<td>12</td>
<td>0.153</td>
<td>1</td>
<td>4</td>
<td>15</td>
<td>52</td>
<td>0.264</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>Oropharynx</td>
<td>32</td>
<td>0.079</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>38</td>
<td>0.046</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>Supraglottis</td>
<td>27</td>
<td>0.135</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>42</td>
<td>0.277</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td>4</td>
<td>Oropharynx</td>
<td>29</td>
<td>0.112</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>48</td>
<td>0.129</td>
<td>8</td>
<td>23</td>
<td>23</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>Oropharynx</td>
<td>173</td>
<td>0.147</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>44</td>
<td>0.102</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>Supraglottis</td>
<td>12</td>
<td>0.145</td>
<td>NA</td>
<td>NA</td>
<td>15</td>
<td>43</td>
<td>0.215</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td>Oropharynx</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>38</td>
<td>0.139</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>Supraglottis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>33</td>
<td>0.242</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>Oropharynx</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>44</td>
<td>0.346</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>Oropharynx</td>
<td>45</td>
<td>0.117</td>
<td>1</td>
<td>4</td>
<td>17</td>
<td>45</td>
<td>0.060</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>Median</td>
<td>28</td>
<td>0.135</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>43</td>
<td>0.186</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: —: no primary/lymph node in the imaged volume. Abbreviations: NA, data not available due to extensive motion; R/NR, responder/nonresponder.
nodes (Fig. 3II). Mean K_{trans} values were lower in the fluctuating regions of nodal tumors ($P < 0.01$) and baseline R_2^* values did not differ ($P = 0.97$). There was no correlation between mean K_{trans} or R_2^* and fluctuating volume percentage ($\tau = -0.09, P = 0.75$ and $\tau = 0.06, P = 0.87$, respectively) in the lymph nodes (representative K_{trans} and R_2^* distributions for fluctuating and nonfluctuating human HNSCC tumor regions are shown in Supplementary Fig. S6).

Treatment outcomes. Clinical outcomes are presented in Table 2. Six of 10 patients were classified as responders, while 3 patients developed progressive or residual disease 3 months postcompletion of the treatment (Pt 3, 5, 7). One patient had locoregional disease relapse 9 months postcompletion of the treatment (Pt 5). The mean lymph nodes fluctuating volume percentage, averaged for both visits, was 8% (range, 2%–15%) in nonresponders and 3% (range, 0%–6%) in responders (Supplementary Fig. S7).

Figure 3. A, Examples of T_2-weighted axial MRI images of HNSCC patients. The distribution of spontaneous R_2^* fluctuations (B) within tumor ROIs (white voxels) is presented for a primary tumor site (I, Pt no.: 1), necrotic node (II, Pt no.: 2) uniformly and nonuniformly contrast-enhancing nodes (III, Pt no.: 8 and IV, Pt no.: 7). C, Corresponding K_{trans} maps showing distribution of volume transfer constant between blood plasma and extracellular extravascular space.
difference was borderline insignificant ($P = 0.051$). There were insufficient data for the primary tumor analysis. There was no difference in mean tumor K_{trans} ($P_{\text{primary}} = 0.19$, $P_{\text{nodes}} = 0.96$) or R_2^* ($P_{\text{primary}} = 0.29$, $P_{\text{nodes}} = 0.81$) values between responders and nonresponders.

Discussion

In this study, we describe the successful implementation of IS-MRI for noninvasive imaging of cycling oxygenation changes in HNSCC, using a clinical 3T MRI scanner. Following promising results from the preclinical phase, the methodology was translated to a clinical study. To the best of our knowledge, our study is the first application of serial IS-MRI methodology to detect cycling hypoxia in a clinical setting.

Measurements of cycling hypoxia using serial IS-MRI was first introduced in a preclinical study of murine fibrosarcoma performed at 4.7T by Baudelet and colleagues (31, 40). In our study, spontaneous R_2^* fluctuations, reflecting varying blood flow and levels of oxygenation/hypoxia, were detected in both CALR xenografts and patients with HNSCC. Preclinically, the cycling variations were apparent in mixed perfused and hypoxic regions of the tumor, confirmed histologically using Hoechst 33342 uptake, and pimonidazole adduct formation. In the patients, R_2^* fluctuations were observed within areas of lymph nodes exhibiting low K_{trans} values, often in the vicinity, but not in the center, of necrotic nodes. It has previously been shown that K_{trans} values correlate with the level of perfusion (42). We observed lower K_{trans} values in fluctuating parts of metastatic lymph nodes, which suggest that fluctuating blood oxygen levels are caused by an insufficient or intermittent blood delivery as a result of aberrant vasculature. This observation aligns with another preclinical study in which approximately 80% of the fluctuations were found to occur in tumor regions with immature vessels (44). This may underpin the negative trend observed between fluctuating R_2^* and perfused fraction in the CALR xenografts, and the negligible level of fluctuations detected within chronically hypoxic and avascular tumor areas identified by pimonidazole adduct formation and DCE MRI, respectively. The lack of correlation between pimonidazole, K_{trans}, and fluctuating volume percentage also indicates that regions exhibiting intermittent blood flow and cycling hypoxia cannot be detected using single contrast agent injection methods. The bioreduction of pimonidazole is averaged in time limiting its use for dynamic oxygenation imaging. DCE data are acquired typically over a much shorter period of time (<10 minutes), and pharmacokinetic modeling assumes constant rates of perfusion and permeability in the assessed vasculature. Serial IS-MRI can be acquired over a longer period of time, revealing the presence of oxygen level fluctuations at frequencies characteristic of cycling hypoxia.

Frequencies in the range of 0.00027 to 0.001 Hz (15–60 minutes) have been reported in preclinical measurements of cycling hypoxia (14, 17, 20, 31, 33). The median frequency of 0.0011 Hz (1 cycle/15 minutes) found in our study is comparable with tumor R_2^* oscillation frequencies reported by Baudelet and colleagues and Goncalves and colleagues (0.0036 Hz and <0.001 Hz, respectively; refs. 31, 33).

CALR xenografts were used in this study, as they emulate the high vascular heterogeneity frequently found in HNSCC tumors in the clinic. It is expected that blood volume is higher in primary HNSCC tumors than metastatic lymph nodes, which for comparable level of tissue oxygenation would result in faster R_2^* rates (more paramagnetic deoxyHb/voxel; refs. 30, 45). Similarly, in the case of severely hypoxic hypovascular tissues, such as those observed in CALR tumors, slow values of R_2^* would be predicted. The presence of hypoxic and underperfused tumor subregions, characteristic of CALR tumors (37), has also been reported in patients with metastatic HNSCC lymph nodes (46). This is consistent with our findings of abundant regions of impaired perfusion and necrosis identified in both preclinical and clinical settings. In our study, the median-fluctuating volume percentage, detected in all imaged CALR tumors, was 8% (range, 4%–11%). This was comparable, but did not correlate ($t = −0.2$, $P = 0.817$), with the pimonidazole fraction (7%). The incidence of cyclic hypoxia is more likely in tumor regions where the oxygen saturation of the blood entering that region is relatively low, resulting in a complex dynamic interplay between chronic and cyclic hypoxia (18). The levels of fluctuating and hypoxic fractions depend on the tumor type, presence of necrosis, vascular stability, and oxygen consumption. The fluctuating volume percentage has also been shown to depend on the study methodology, with published estimates varying between 0% and 80% (17).

Noninvasive measurement of cycling tumor hypoxia is challenging in patients due to the need for multiple data time points. Most of the methodologies that have been successfully used to study varying levels of hypoxia in preclinical studies are not applicable to clinical studies. Invasive studies of superficial human tumors using laser Doppler flow measurement demonstrated significant changes in microregional blood flow in 54% of the regions monitored over a 60-minute period (47, 48). Around 19% of the observed perfusion changes were reversed over a time course of 4 to 44 minutes. A modeling study using serial pretreatment 18F-FMISO-PET scans in patients with HNSCC reported that acute hypoxia ranged from 13% to 52% (49). In our study, fluctuating volume percentage varied between 0 and 23%. The level of fluctuations was consistent between the scans: mean values of fluctuating volume percentage measured in two MRI visits did not differ statistically ($P = 0.12$), confirming robustness of methodology and prevalence of cycling oxygenation changes in HNSCC tumors. Assuming the average patient value of systemic hematocrit (0.4) as the value of microvascular hematocrit, and a hypoxic range of blood oxygenation between 0 and 0.3, the maximum observed ΔR_2^* (~40 s$^{-1}$) would correspond to a 0.2 change in blood oxygenation at 3T (45). This would equate to a change of between 0 and 16 mm Hg (human blood, coefficient for blood oxygen binding: 2.26; temperature: 37°C; pH: 7.4).

Intriguingly, the difference of the mean fluctuating volume percentage between responding and nonresponding patient groups approached statistical significance ($P = 0.051$), indicating the potential of R_2^* fluctuating volume percentage as a predictive and prognostic biomarker in HNSCC. This warrants further evaluation in a larger patient group.

Several limitations of this study should be considered. Patient HNSCC primary tumor sites (e.g., base of tongue, pharynx) were affected by significant internal motion that could not be compensated for and hence led to exclusion from the analysis. One possible way to reduce this issue would be to use customized oral stents (50). This may decrease patient comfort however, and the tolerability would have to be assessed. Another limitation is the restricted coverage of the serial multiple gradient echo at the required temporal resolution. This limited our
analysis to the center part of primary tumors and coplanar local lymph nodes. Echo planar imaging readouts, commonly used in serial IS-MRI studies of brain activity, may improve this aspect (51). These sequences are, however, prone to distortion artifacts in the vicinity of air and tissue interfaces, which is likely to affect HNSCC primary tumor analysis (52). Finally, the prevalence and spatial distribution of oxygen fluctuation in patients was correlated to the transfer constant Ktrans estimated using DCE MRI, but not to the absolute level of chronic hypoxia, which is a common and well-recognized cause of radioresistance in HNSCC. MRI-based methods to identify chronic hypoxia employing hyperoxic challenge–induced changes in R2* and R1 have recently been proposed (53–55) and could be combined with serial IS-MRI in future studies to provide information on the impact of both cycling and chronic hypoxia on patient treatment.

In conclusion, we demonstrated the feasibility of oxygen fluctuation mapping in HNSCC xenografts and translation to patient tumors using a clinical 3T MRI system. Our results suggest the presence of fluctuating blood oxygen levels in regions of impaired vasculature, but not in necrotic avascular parts of the tumor.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions

Writing, review, and/or revision of the manuscript: M. Leach, L. Baker, S. Bhide, C. Box, J. d’Arcy, A. Dunlop, S. Eccles, K. Harrington, D. Koh, K. Newbold, C. Nutting, R. Panek, C. Richardson, A. Riddell, S. Robinson, M. Schmidt, L. Welsh, K. Wong

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L. Baker, J. d’Arcy, D. McQuaid, C. Richardson, K. Wong

Study supervision: M. Leach, K. Harrington, K. Newbold, C. Nutting, S. Robinson

Acknowledgments
The authors would like to thank Jessica Boult and Yann Jamin for constructive discussions, the MRI team at the Royal Marsden Hospital, and staff from the Biological Services Unit for their help.

Grant Support
This work was supported by Cancer Research UK Programme Grants C46/A10588 and C7224/A13407. The authors also acknowledge the support of CRUK and EPSRC to the Cancer Imaging Centre at ICR and RMH in association with MRC & Department of Health C1060/A10334, C1060/A16464 CRUK project grant C1060/A12752 and MRC grant G0701533, together with funding to the RS/ICR NIHR Biomedical Research Centre and the Clinical Research Facility in Imaging. M.O. Leach and K.I. Harrington are NIHR Senior Investigators. C. Box was supported by the Oracle Cancer Trust. This work was undertaken at The Royal Marsden NHS Foundation Trust, which received a proportion of its funding from the NHS Executive. The views expressed in this publication are those of the authors and not necessarily those of the NHS Executive.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 11, 2016; revised July 19, 2016; accepted March 3, 2017; published OnlineFirst March 17, 2017.

References
Clinical Cancer Research

Noninvasive Imaging of Cycling Hypoxia in Head and Neck Cancer Using Intrinsic Susceptibility MRI

Rafal Panek, Liam Welsh, Lauren C.J. Baker, et al.

Clin Cancer Res Published OnlineFirst March 17, 2017.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-16-1209

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2017/03/17/1078-0432.CCR-16-1209.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.