Phase Ib Study of Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Combination with Pembrolizumab (MK-3475) in Patients with Advanced Solid Tumors

Anthony W. Tolcher¹, Mario Sznol², Siwen Hu-Lieskovan³, Kyriakos P. Papadopoulos¹, Amita Patnaik¹, Drew W. Rasco¹, Donna Di Gravio⁴, Bo Huang⁵, Dhiraj Gambhire⁶, Ying Chen⁷, Aron D. Thall⁷, Nuzhat Pathan⁷, Emmett V. Schmidt⁸, and Laura Q. M. Chow⁹

¹START Center for Cancer Care, San Antonio, Texas; ²Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut; ³David Geffen School of Medicine at UCLA, Los Angeles, California; ⁴Pfizer Oncology, Collegeville, Pennsylvania; ⁵Pfizer Oncology, Groton, Connecticut; ⁶Pfizer Oncology, New York, New York; ⁷Pfizer Oncology, La Jolla, California; ⁸Merck & Co., Inc., Kenilworth, NJ; ⁹University of Washington, Seattle, Washington.

Running Title: Utomilumab plus Pembrolizumab in Advanced Solid Tumors

Keywords: 4-1BB, CD-137, utomilumab, PF-05082566, pembrolizumab, solid tumors

Financial Support: This study was sponsored by Pfizer Inc. and by Merck & Co., Inc., Kenilworth, NJ USA.

Corresponding Author: Anthony W. Tolcher, MD, South Texas Accelerated Research Therapeutics, 4383 Medical Drive, Suite 4021, San Antonio, TX 78229.

Phone: 210-593-5255; Fax: 210-615-1121; E-mail: atolcher@start.stoh.com
Statement of translational relevance

A novel combination of the 4-1BB/CD137 agonist utomilumab with the PD-1 blocking mAb pembrolizumab was well tolerated and demonstrated antitumor activity in patients with advanced malignancies. Most responses were durable and observed across a broad range of tumors, including small-cell lung cancer, non-small-cell lung cancer, anaplastic thyroid carcinoma, renal cell carcinoma, and squamous cell carcinoma of the head and neck, warranting further evaluation.
Abstract

Purpose: This phase Ib study (NCT02179918) evaluated the safety, antitumor activity, pharmacokinetics, and pharmacodynamics of utomilumab, a fully human IgG2 mAb agonist of the T-cell costimulatory receptor 4-1BB/CD137 in combination with the humanized, PD-1-blocking IgG4 mAb pembrolizumab in patients with advanced solid tumors.

Experimental Design: Utomilumab (0.45–5.0 mg/kg) and pembrolizumab (2 mg/kg) were administered intravenously every 3 weeks. Utomilumab dose escalation was conducted using the time-to-event-continual reassessment method.

Results: Twenty-three patients received combination treatment with no dose-limiting toxicities. Treatment-emergent adverse events were mostly grades 1-2, without any treatment-related discontinuations. Six (26.1%) patients had confirmed complete or partial responses. Pharmacokinetics and immunogenicity of utomilumab and pembrolizumab were similar when administered alone or in combination. A trend toward higher levels of activated memory/effector peripheral blood CD8+ T-cells was observed in responders versus non-responders.

Conclusions: The safety, tolerability, and clinical activity demonstrated by utomilumab in combination with pembrolizumab support further investigation in patients with advanced solid tumors.
Introduction

Durable responses and improvements in survival produced by the immune checkpoint inhibitors, particularly antibodies blocking the programmed cell death (PD)-1 pathway, have changed the treatment paradigm for various advanced solid malignancies, including melanoma, non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), squamous cell carcinoma of the head and neck (SCCHN), and bladder cancer (1–3). Monotherapy with the anti-PD-1 monoclonal antibody (mAb) pembrolizumab (MK-3475) demonstrated efficacy and a well-tolerated safety profile in patients with advanced melanoma, NSCLC, and SCCHN; and promising clinical activity in patients with other solid tumors (4–7).

Despite the proven benefits of the PD-1 checkpoint inhibitors for patients with solid malignancies, the majority of patients do not respond or have responses of short duration, even in disease indications in which PD-1 inhibitors have shown the most activity, and eventually die of their disease. Therefore, substantial efforts are being made to identify novel biologic agents that modulate key targets controlling antitumor immune functions, to increase the rates and durability of antitumor responses, induce clinical remissions, and ultimately improve survival, either as single-agent therapy or in combination with PD-1 checkpoint inhibitors or other immunotherapeutic agents (1–3).

Utomilumab (PF-05082566) is a novel, fully human IgG2 agonist mAb which binds with high affinity to 4-1BB/CD137, a costimulatory molecule induced upon T-cell receptor (TCR) activation that promotes cell survival and enhances cytotoxic T-cell responses (8). Engagement of 4-1BB/CD137 by utomilumab induces T-cell proliferation, cytokine production, and inhibition of tumor growth in human peripheral blood
lymphocyte (PBL) severely compromised immunodeficient (SCID) xenograft models (8). Preliminary results from a phase I study (NCT01307267) of single-agent utomilumab in patients with advanced solid malignancies and in combination with the anti-CD20 mAb rituximab in patients with relapsed or refractory CD20+ non-Hodgkin lymphoma showed that treatment was well tolerated (up to an utomilumab dose of 10 mg/kg), with no dose-limiting toxicities (DLTs), and provided preliminary evidence of clinical activity in these patient populations (9, 10).

Induction of T-cell activation and cytokine production (e.g., interferon [IFN]-γ) by 4-1BB/CD137 agonists is predicted to induce increased expression of PD ligand (PD-L)-1 by tumor or other immune cells in the tumor microenvironment, which would inhibit T-cell function by binding to the PD-1 immune checkpoint and therefore compromise antitumor effects, unless compensated by blockade of PD-1 or PD-L1 (11). In contrast, the antitumor activity of PD-1/PD-L1 antagonists may be limited by an inadequate antitumor T-cell response.

Combinations of 4-1BB/CD137 agonists with PD-1 blockade may provide complementary, modulatory effects on antitumor immune responses, and indeed have been shown to produce additive or synergistic antitumor activity in solid tumor models, as suggested by the PD-1 and CD137 co-expression and functional interaction demonstrated in human tumor-infiltrating lymphocytes and mouse models (11–17). The antitumor activity produced by the combination was associated with an elevated CD8+/regulatory T-cell ratio and increased activity of tumor-specific cytotoxic T lymphocytes in the poorly immunogenic B16F10 melanoma model. Consistently, treatment-induced tumor growth inhibition was not observed in mice depleted of CD8+...
cells or in IFN-γ deficient mice (11). In an ovarian cancer model, treatment with anti-
CD137 and anti-PD-1 agents was associated with an increase in effector CD8+ T cells,
a decrease in immunosuppressive regulatory T cells, and improved survival (12).

To investigate a new treatment strategy for improving responsiveness and
outcomes in patients with solid malignancies in which checkpoint inhibitors may have a
limited clinical activity, this phase Ib study (B1641003/KEYNOTE-0036) evaluated
safety, antitumor activity, pharmacokinetics (PK), and pharmacodynamics of
utomilumab in combination with pembrolizumab in patients with advanced solid tumors.

Methods

Study design, objectives, and treatment

The primary objective of this phase Ib open-label, multicenter, dose-escalation
study was to estimate the maximum tolerated dose (MTD) and select the recommended
phase II dose (RP2D) for the combination of utomilumab plus pembrolizumab
administered every 3 weeks (Q3W) to patients with advanced solid tumors. The primary
endpoint was DLT occurring in the first 2 treatment cycles (6 weeks). Secondary
endpoints included the overall safety and tolerability profile, PK parameters of both
mAbs, anti-drug antibody (ADA) levels, and objective tumor response by Response
Evaluation Criteria in Solid Tumors (RECIST) v1.1. Further, exploratory endpoints
included changes in peripheral blood biomarkers (e.g., percentage of activated T-cell
subsets and IFN-γ levels).
Patients received utomilumab in combination with pembrolizumab 2 mg/kg (30-minute intravenous infusion) on the first day of each 21-day cycle. The starting dose for utomilumab was 0.45 mg/kg (1-hour intravenous infusion) with escalation to 0.9 mg/kg, 1.8 mg/kg, 3.6 mg/kg, and 5 mg/kg in the subsequent cohorts. In the event of excessive toxicity at the starting dose, de-escalation to a dose of 0.2 mg/kg (dose –1) was predefined for the subsequent cohort. Intra-patient dose escalation was not permitted.

The MTD was defined as the highest combination dose with a DLT rate <25% based on the novel time-to-event continual reassessment method (TITE-CRM) design with cyclical adaptive weight function (18, 19), which is a Bayesian model-based design that allows continuous evaluation of toxicity based on complete and incomplete data on DLT using a time-to-event method. Dose escalation would be halted if the maximum sample size of 45 patients was reached, or after treatment of 9 evaluable patients at the estimated MTD, or if all doses demonstrated excess toxicity and the MTD could not be determined.

A maximum of 32 treatment cycles were planned for the study. Treatment was to be continued until disease progression, patient withdrawal, unacceptable toxicity, or premature study termination. Clinically stable patients could continue receiving study treatment post progression until disease progression was confirmed ≥4 weeks later or if they had signed an addendum consent to continue with study drug and at repeat imaging they had no further progression and were still deriving clinical benefit in the opinion of the treating investigator. Early treatment discontinuation could be considered for patients who had achieved a confirmed complete response (CR), if they had
received ≥2 treatment cycles following the initial declaration of a CR and had been treated for ≥24 weeks.

Patients

Patients (aged ≥18 years) were included in the study if they had a histological or cytological diagnosis of advanced/metastatic solid tumor malignancy that had progressed on standard therapy or for which no standard therapy was available; had measurable disease by RECIST v1.1, Eastern Cooperative Oncology Group (ECOG) 0–1, and adequate renal, cardiac, hepatic, and bone marrow function. Patients were excluded if they had a primary central nervous system malignancy or known symptomatic, unstable, progressing brain metastases; were unable to discontinue clinically therapeutic doses of systemic steroid therapy (not inhaled or topical) or any other form of immunosuppressive therapy within 14 days prior to registration; had received chemotherapy, growth factors, investigational agents, or major surgery within 28 days, a live vaccine within 30 days, or mAb therapy within 60 days before registration. Prior treatment with anti-PD1/PD-L1 or other immunostimulatory mAbs was allowed. Patients were also excluded if they had an active autoimmune disease or a documented history of autoimmune disease or syndrome that required systemic steroids or immunosuppressive agents, had a history of toxicities associated with prior immunotherapy, had had a severe hypersensitivity reaction to treatment with another mAb, or were known to be positive for ADA to utomilumab or pembrolizumab.

The study was approved by the institutional review boards or independent ethics committees of the participating centers and followed the Declaration of Helsinki and International Conference on Harmonisation Good Clinical Practice guidelines. All
patients provided informed consent to participate in the study. The study was sponsored by Pfizer Inc. and Merck & Co., Inc., Kenilworth, NJ USA, and registered at ClinicalTrials.gov (NCT02179918).

Assessments

Safety

Safety was monitored at regular intervals throughout the study by clinical visits (physical examination, vital signs, review of concurrent medications, and triplicate 12-lead electrocardiogram) and laboratory evaluations. Reported adverse events were characterized by type, frequency, relationship to study drugs, and severity (graded by the National Cancer Institute Common Terminology Criteria for Adverse Events v.4.03).

The following adverse events were considered DLTs if they occurred during the observation period (first 2 cycles/6 weeks) of dose escalation and were attributable to 1 or both study drugs: hematologic adverse events (febrile neutropenia, grade 4 neutropenia, grade 3 neutropenic infection, grade 3 thrombocytopenia with bleeding, or grade 4 thrombocytopenia), non-hematologic adverse events (grade ≥3 toxicities including maximally treated grade ≥3 nausea, vomiting, or diarrhea; grade 4 increased aspartate aminotransferase or alanine aminotransferase), grade ≥3 non-hematologic laboratory abnormality requiring medical treatment or hospitalization, or inability to complete 2 infusions of utomilumab and pembrolizumab in the DLT-observation period.

Tumor response

Tumor assessments were performed radiographically by computed tomography or magnetic resonance imaging at baseline, 9 weeks after the first dose of study
treatment, every 6 weeks thereafter, whenever disease progression was suspected (e.g., symptomatic deterioration), and at the end of treatment/withdrawal (if not done in the previous 6 weeks), using RECIST v1.1. For patients with a confirmed CR or partial response (PR), tumor assessments could be performed as clinically indicated.

Pharmacokinetics

Blood samples were collected for PK analyses of utomilumab on day 1 (predose and end of infusion) of cycles 1–4; day 1 (predose, end of infusion, 2, 6, and 24 hours post start of infusion), day 8, and day 15 of cycle 5; day 1 of cycle 6 (predose); day 1 (predose, end of infusion, 24 hours) and day 8 of cycle 7; then predose every 2 cycles up to cycle 12; every 4 cycles thereafter; and at end of treatment (EOT). Blood samples were collected for PK analyses of pembrolizumab on day 1 of cycles 1–5 (predose and end of infusion); on day 1 (predose, end of infusion, 24 hours) and day 8 of cycle 7; predose every 2 cycles up to cycle 12; every 4 cycles thereafter; at the EOT; and at 28 days, 3 and 6 months after EOT.

Samples were analyzed for utomilumab and pembrolizumab concentrations using validated analytical methods. Standard serum PK parameters including maximum observed serum concentration (C_{max}), time to maximum serum concentration (t_{max}), and area under the concentration–time curve (AUC) were estimated for utomilumab using non-compartmental analysis.

Immunogenicity

Blood samples for utomilumab and pembrolizumab immunogenicity testing were collected predose in cycles 1, 3, 5, 7 and, subsequently, predose every 2 cycles up to...
cycle 12, every 4 cycles thereafter, and at EOT. If ADA were detected, additional samples were to be collected approximately every 3 months until ADA levels returned to baseline. For pembrolizumab, ADA samples were collected at 28 days after end of pembrolizumab treatment and during follow-up. Blood samples were assayed for ADA against utomilumab or pembrolizumab using validated analytical methods, following standard operating procedures. Samples positive for ADA were further evaluated for the presence of neutralizing antibodies.

Pharmacodynamics and biomarker analysis

Patient serum samples were analyzed for the cytokines IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and TNF-α on day 1 of cycles 1–4 (pre-dose and end of infusion); and on day 1 of cycle 5 (pre-dose and end of infusion) and at 2, 6, and 24 hours after the start of infusion. All cytokines except for IL-8 were assayed using the Bio-Plex® Precision Pro™ Cytokine Assay kit (Bio-Rad Laboratories Inc., Hercules, CA). IL-8 was assayed using the Quantikine Human CXCL8/IL-8 Immunoassay (R&D Systems, Minneapolis, MN).

Lymphocyte subpopulations (e.g., T-cell subsets) were analyzed by flow cytometry of peripheral blood samples collected on day 1 of cycle 5 (pre-dose and end of infusion), and at 2, 6, 24, 168, and 336 hours after start of infusion. The analyses were performed on a FACSCanto II flow cytometer (BD Biosciences, San Jose, CA) using three antibody panels: (1) CD45RA, CD38, CD45, CD8, CD3, CCR7, CD4, HLA-DR; (2) CD127, CD45RO, CD45, CCR4, CD3, CD25, CD4, HLA-DR; (3) CD27, CD56, CD8, Ki-67, CD3, granzyme B, CD45. Reagents were procured from BD Biosciences (San Jose, CA) and BioLegend (San Diego, CA).
Statistical analyses

The TITE-CRM design was implemented in this study as described with cyclical adaptive weight function (18, 19). A dose-escalation steering committee was established to facilitate the trial conduct process (20). To achieve a reliable MTD estimate, the sample size for the dose-escalation cohorts was set at up to 45 patients with early stopping rules. The objective response rate per RECIST 1.1 was summarized with exact 2-sided 95% CI calculated using the Clopper-Pearson method. PK parameters were summarized with descriptive statistics. For biomarker endpoints, the mean and standard deviation, median, and minimum/maximum levels of biomarker measures (e.g., percentage of CD3+ T cells) were determined at baseline and after treatment, with calculation of the percentage change from baseline.

Results

Patients

Twenty-three patients received pembrolizumab 2 mg/kg and utomilumab 0.45 mg/kg (n = 5), 0.9 mg/kg (n = 3), 1.8 mg/kg (n = 3), 3.6 mg/kg (n = 3), or 5.0 mg/kg (n = 9) (Supplementary Table S1). All patients were assessed for safety and tumor response. The number of study treatment cycles received by patients across all dose levels ranged from 2 to 28, with a median duration of treatment of 19.4 (range, 6.0–86.9) weeks. The majority (n = 14, 61%) of patients discontinued treatment due to disease progression or relapse. Two (8.7%) patients discontinued due to non treatment-related adverse events; 1 (4.3%) patient was lost to follow-up; 2 (8.7%) patients
withdrew consent to continue receiving study drug; and 1 (4.3%) patient discontinued treatment for other reason.

Across treatment groups, mean age was 58 (range 26–83) years (Table 1); 43.5% of patients were 65 years of age or older and 60.9% were male. Six (26.1%) patients had NSCLC, 5 (21.7%) RCC, 3 (13%) SCCHN, 2 each (8.7%) pancreatic or thyroid cancer, and 1 each small cell lung cancer (SCLC), colon cancer, sarcoma, thymic cancer, or ocular melanoma (Table 1). The majority of patients had received prior systemic therapy (91.3%, 1–9 lines of treatment) with a median of 3 prior regimens. One patient each had received prior treatment with pembrolizumab, nivolumab, or ipilimumab; none of the patients had received prior combined treatment with nivolumab and ipilimumab.

Dose-limiting toxicities and safety

As no DLTs were observed in any of the 23 DLT-evaluable patients across all dose groups (0.45–5.0 mg/kg), dose escalation continued until the highest planned dose level and the MTD was estimated, per the TITE-CRM design, to be at least 5.0 mg/kg Q3W of utomilumab when combined with pembrolizumab 2.0 mg/kg Q3W. The combination was well tolerated with mild toxicities, as shown in Table 2.

The most common treatment-related adverse events included fatigue (34.8%), rash (34.8%), pruritus (21.7%), and pyrexia, decreased appetite, dry mouth, dry skin, and nausea (each 13%); all were grades 1–2. Treatment-related grade 3–4 adverse events included grade 3 adrenal insufficiency ($n = 1$; 3.6 mg/kg) and grade 3 hypokalemia ($n = 1$; 5 mg/kg). No grade 5 treatment-related adverse events were observed in this study.
The most frequent, treatment-emergent (all causality, all grades) adverse events observed in this study were fatigue (43.5%), rash (43.5%), cough (34.8%), decreased appetite (30.4%), and nausea (30.4%) (Table 2). Of these, only fatigue was reported as a grade 3–4 adverse event, in 1 patient. Other grade 3–4 adverse events observed in >2 patients included anemia and hyponatremia (each n = 3, 13%). Seven deaths were reported in this study, all due to disease under study, 5 of which occurred within 90 days after last treatment dose (1 of these 5 deaths occurred within 30 days after last dose of treatment).

Antitumor activity

Six of the 23 treated patients achieved a confirmed complete (CR) or partial response (PR) (objective response rate 26%; 95% CI, 10.2–48.4%) (Table 3). Two (8.7%) patients had confirmed CRs, including 1 patient with SCLC (5 mg/kg) and 1 with RCC (1.8 mg/kg) (Fig. 1A). Four (17.4%) patients had confirmed PRs, including 1 patient each with anaplastic thyroid carcinoma (3.6 mg/kg), NSCLC (0.45 mg/kg), SCCHN (5 mg/kg), and RCC (0.45 mg/kg). Median time to response (defined as the time from first dose of study treatment to the first documentation of objective response) was 3.5 (range, 1.7–6.2) months. Five of the 6 responders maintained a response for >6 months (Fig. 1B). Median duration of response (defined as the time from first documentation of objective response to first documentation of disease progression or death due to any cause) was not reached (95% CI, 5.1 months–NE). None of the responders had received prior treatment with a PD-1 or PD-L1 antagonist. Similar response rates were observed in patients with and without ADA against utomilumab (26.7% and 25.0%, respectively). CT scans are shown in Fig. 2 for the patients with
SCLC and NSCLC, and in Supplementary Fig. S1 for the patient with anaplastic thyroid carcinoma. This 62-year-old woman with advanced anaplastic thyroid carcinoma started study treatment on December 30, 2014 with first achievement of a PR on March 2, 2015, confirmed on April 13, 2015. In June 2015 the patient interrupted treatment to undergo spinal surgery to alleviate pain. The patient did not recover from this surgery and experienced disease-related global deterioration of health (septicemia potentially due to urinary tract infection or pneumonia) and death (August 4, 2015).

Best overall response of stable disease (defined as ≥1 stable disease assessment, or better, ≥6 weeks after first dose of study treatment and before progression, not qualifying for CR or PR) was achieved by 10 (43.5%) patients across tumor types. Five of these 10 patients had stable disease lasting >4 months. Seven (30.4%) patients had best overall response of disease progression.

Pharmacokinetic and anti-drug antibodies analysis

A summary of PK parameters of utomilumab following multiple dosing in combination with pembrolizumab is presented in Supplementary Table S2. Mean C_{max} appeared to increase with increasing doses of utomilumab, from 7.63 μg/mL at 0.45 mg/kg to 92.6 μg/mL at 5 mg/kg. Dose-dependent increases were also observed for utomilumab mean area under the concentration–time curves over the dosing interval (AUC_{tau}), from 1,093 μg•h/mL at 0.45 mg/kg to 10,480 μg•h/mL at 5 mg/kg. The exposure of utomilumab administered in combination with pembrolizumab was comparable to that observed with utomilumab alone (9). Mean concentration–time profiles for pembrolizumab are presented in Supplementary Fig. S2. The exposure for
pembrolizumab administered in combination with utomilumab was comparable to that observed with pembrolizumab alone (7).

Seventeen (73.9%) of 23 patients were positive for ADA against utomilumab at ≥1 time point regardless of baseline ADA status. The presence of positive ADA at baseline (2 of 23 patients) was likely due to pre-existing host antibodies that were cross-reactive with utomilumab. Fifteen (65.2%) of 23 patients exhibited treatment-induced ADA and none of the patients had treatment-boosted ADA. Median onset of ADA was 42 days. The incidence of ADA against utomilumab was similar in the presence or absence of pembrolizumab (9). Seven (30.4%) of 23 patients had utomilumab-neutralizing antibodies. None of the 23 patients tested positive for ADA against pembrolizumab. Similar utomilumab exposure (eg, dose-normalized AUC) was observed in patients with treatment-induced ADA and patients with negative ADA. Two (13.3%) of 15 ADA-positive patients and 1 (12.5%) of 8 ADA-negative patients experienced treatment-emergent, all causality hypersensitivity/infusion reactions. In addition, the presence of ADA against utomilumab did not preclude patients from responding to the combination treatment: 2 responders out of 8 ADA-negative patients (25%) vs 4 responders out of 15 ADA-positive patients (26.7%).

Pharmacodynamic analyses

Cytokine analyses were performed to assess potential relationships between cytokine induction and adverse events due to the combination. Consistent with the observed safety profile of the combination, no significant (p < 0.05) changes in IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and TNF-α were observed after dosing (data not
shown). Patients with a clinical response showed a trend toward higher levels of IFN-γ compared with non-responders at 6 and 24 hours post-dose on cycle 5 day 1 (Fig. 3A).

Assessments of circulating lymphocyte subpopulations were performed at cycle 5 when both agents were considered to have achieved steady-state kinetics. No significant (p < 0.05) relationships were observed between the administered doses of utomilumab and pembrolizumab and proportion of lymphocytes defined by the markers used, including CD4 (helper T cell), CD8 (cytotoxic T cell), FoxP3 (regulatory T cell), granzyme B (cytotoxicity), CD56 (natural killer cell), and Ki-67 (proliferation) (data not shown). As presented in Fig. 3B, patients with a tumor response showed a trend toward higher percentages of activated (CD8⁺/CD45RA⁻[CD3⁺]), memory (CD45RA⁻/[CD3⁺/CD8⁺]), and effector/memory (CD45RA⁻/CCR7-[CD3⁺/CD8⁺]) CD8⁺ T cells versus non-responders.

Discussion

In the current immunotherapy landscape, responses to single-agent PD-1 checkpoint inhibitors range from 10% to 30% across a number of solid malignancies, including melanoma, NSCLC, RCC, SCCHN, and others (1–7, 21). However, the majority of patients do not respond upfront or eventually progress. Combination immunotherapies with agents such as CTLA-4 inhibitors may enhance efficacy and responses, but also substantially increase toxicity, as reported in patients with melanoma or lung cancer (22, 23). Despite the successes of PD-1 checkpoint blockade across various malignancies, there is still an urgent need to improve outcomes and survival for patients with advanced solid tumors.
We report results from the first study designed to evaluate safety, clinical activity, PK, and pharmacodynamics of a novel combination of the 4-1BB/CD137 agonist utomilumab with the anti-PD-1 mAb pembrolizumab for the treatment of patients with advanced solid malignancies. This combination was notable for its safety profile and tolerability at the doses evaluated in this study, and the encouraging antitumor activity.

Based on the lack of DLTs observed in the dose-escalation groups (utomilumab 0.45–5.0 mg/kg), the MTD was estimated to be at least 5 mg/kg Q3W for utomilumab when combined with pembrolizumab 2 mg/kg Q3W. No treatment-emergent adverse events of clinical relevance were reported. The only combination treatment-related grade 3–4 adverse events observed in this study were grade 3 adrenal insufficiency (previously reported in rare cases with pembrolizumab therapy [24]) and grade 3 hypokalemia (1 patient each). None of the patients discontinued treatment due to a treatment-related adverse event, and the duration of treatment ranged from 2 to 28 cycles with a median of 6 cycles. The frequency of ADA (~70%) observed in this study was comparable to that previously reported for single-agent utomilumab (9). The general lack of significant treatment-associated adverse events indicates that the development of ADA did not result in safety-related consequences for ADA-positive patients. The safety profile of the combination appeared consistent with historical data for pembrolizumab alone (4–7), although further studies will be required to clearly establish the safety and tolerability of this combination.

Clinical activity was observed across a broad dose range (0.45–5.0 mg/kg) of utomilumab in combination with pembrolizumab and across multiple tumor types including advanced SCLC and anaplastic thyroid cancer, which are malignancies with
very unfavorable prognosis and no effective therapeutic options available to patients (25-29). Although rare, anaplastic thyroid cancer is a biologically aggressive tumor. The provocative findings, in this study, of pulmonary and skin metastases that responded rapidly to treatment should strongly encourage further development of this combination in this largely untreatable malignancy (28, 29).

It was striking to observe the depth and durability of the antitumor activity observed in the patients who responded to therapy (median duration of response not reached; 95% CI, 5.1 months–NE). However, due to the low number of patients and the exploratory nature of the dose-finding part of this trial, no efficacy conclusions can be drawn for this combination. Furthermore, because pembrolizumab is active as a single agent across multiple malignancies (4–7), the contribution of utomilumab to the observed antitumor activity cannot be determined in this trial, in the absence of a concurrent randomized control arm. Preliminary results from a prior study had shown a confirmed CR (Merkel cell carcinoma), two confirmed PRs (melanoma and Merkel cell carcinoma), and stable disease as best overall response in 6/27 (22%) patients with advanced solid malignancies treated with single-agent utomilumab (9). No drug interactions were observed between utomilumab and pembrolizumab. This is consistent with the concept that both biologics are eliminated via a nonspecific catabolic degradation process, which is unlikely to alter their clearance upon coadministration.

Analysis of cytokines and lymphocyte subpopulations in peripheral blood indicated that administration of utomilumab and pembrolizumab at these doses and schedule did not cause significant perturbations to the immune system, consistent with the observed tolerability of the combination. Some intriguing correlations between
clinical benefit and elevated effector/memory CD8+ cells or IFN-γ were observed, consistent with pre-clinical observations (11), although this dose-escalation study was not designed or powered to detect a relationship between peripheral biomarkers and clinical outcome. Confirmation of these trends, as well as identification of baseline biomarkers that correlate with clinical benefit, await future studies designed for formal evaluation of such relationships.

In conclusion, the favorable safety profile and the promising clinical activity with durable responses observed in this study support further evaluation of utomilumab in combination with pembrolizumab or other PD-1 pathway inhibitors for the treatment of patients with advanced solid malignancies. Additional clinical studies are ongoing to evaluate other antitumor immune mechanisms in combination with utomilumab in patients with advanced solid tumors, including a phase I/Ilb study of utomilumab in combination with the anti-PD-L1 mAb avelumab (NCT02554812, JAVELIN MEDLEY), and phase I studies in combination with the OX40 agonist PF-04518600 (NCT02315066) or the chemokine receptor-4 (CCR4)-targeted mAb mogamulizumab (NCT02444793).

Acknowledgments

The authors thank Dr. Craig Davis for his review of the manuscript and helpful discussion of the pharmacodynamic data; and the patients and their families/caregivers, the investigators, research nurses, study coordinators, and operations staff who contributed to this study. Medical writing and editorial support was provided by S. Mariani, MD, PhD, of Engage Scientific Solutions and was funded by Pfizer Inc.
References

Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 2016;17:883–95.

Table 1. Patient demographic and baseline characteristics by dose group

<table>
<thead>
<tr>
<th>Pembrolizumab 2 mg/kg + Utomilumab mg/kg</th>
<th>0.45</th>
<th>0.9</th>
<th>1.8</th>
<th>3.6</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Male : Female</td>
<td>4 : 1</td>
<td>3 : 0</td>
<td>1 : 2</td>
<td>1 : 2</td>
<td>5 : 4</td>
<td>14 : 9</td>
</tr>
<tr>
<td>Mean age, range</td>
<td>60.0 (45–79)</td>
<td>62.0 (54–75)</td>
<td>51.7 (30–74)</td>
<td>54.7 (31–71)</td>
<td>58.8 (26–83)</td>
<td>58.0 (26–83)</td>
</tr>
<tr>
<td>Age, ≥65 years, n (%)</td>
<td>2 (40)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>5 (55.6)</td>
<td>10 (43.5)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>White</td>
<td>4 (80)</td>
<td>0</td>
<td>0</td>
<td>3 (100)</td>
<td>5 (55.6)</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (11.1)</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Asian</td>
<td>1 (20)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>0</td>
<td>2 (66.7)</td>
<td>0</td>
<td>2 (22.2)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Primary cancer, n (%)</td>
<td>NSCLC</td>
<td>2 (40)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>2 (22.2)</td>
</tr>
<tr>
<td></td>
<td>Renal cell cancer</td>
<td>2 (40)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Head and neck cancer</td>
<td>0</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Pancreatic cancer</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Thyroid cancer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>SCLC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Colon cancer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Sarcoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Thymic cancer</td>
<td>1 (20)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
</tr>
<tr>
<td>Prior systemic anticancer therapy, n (%)</td>
<td>Yes</td>
<td>5 (100)</td>
<td>3 (100)</td>
<td>2 (66.7)</td>
<td>2 (66.7)</td>
<td>9 (100)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
</tr>
<tr>
<td>Prior radiation therapy, n (%)</td>
<td>Yes</td>
<td>3 (60)</td>
<td>1 (33.3)</td>
<td>3 (100)</td>
<td>2 (66.7)</td>
<td>6 (66.7)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>2 (40)</td>
<td>2 (66.7)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>3 (33.3)</td>
</tr>
<tr>
<td>Prior anticancer surgery, n (%)</td>
<td>5 (100)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>9 (100)</td>
<td>23 (100)</td>
</tr>
</tbody>
</table>
Table 2. Treatment-emergent adverse events in ≥15% of patients

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Pembrolizumab (2 mg/kg) + Utomilumab (N = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment-emergent</td>
</tr>
<tr>
<td></td>
<td>All grades</td>
</tr>
<tr>
<td>Fatigue</td>
<td>10 (43.5)</td>
</tr>
<tr>
<td>Rash</td>
<td>10 (43.5)</td>
</tr>
<tr>
<td>Cough</td>
<td>8 (34.8)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>7 (30.4)</td>
</tr>
<tr>
<td>Nausea</td>
<td>7 (30.4)</td>
</tr>
<tr>
<td>Constipation</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>Anemia</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>4 (17.4)</td>
</tr>
</tbody>
</table>

*a None of the patients discontinued due to treatment-related adverse events.

*b Treatment-related grade 3 adverse events reported in this study included adrenal insufficiency and hypokalemia (n = 1 each).
Table 3. Best overall response by dose group

<table>
<thead>
<tr>
<th>Pembrolizumab 2 mg/kg + Utomilumab mg/kg</th>
<th>0.45</th>
<th>0.9</th>
<th>1.8</th>
<th>3.6</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Complete response(^{a}) n (%)</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>1 (11.1)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Partial response(^{a}) n (%)</td>
<td>2 (40)</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>1 (11.1)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Stable disease, n (%)</td>
<td>2 (40)</td>
<td>2 (66.7)</td>
<td>1 (33.3)</td>
<td>2 (66.7)</td>
<td>3 (33.3)</td>
<td>10 (43.5)</td>
</tr>
<tr>
<td>Objective progression, n (%)</td>
<td>1 (20)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>4 (44.4)</td>
<td>7 (30.4)</td>
</tr>
<tr>
<td>Objective response rate, n (%)</td>
<td>2 (40)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>2 (22.2)</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>95% exact CI(^{b})</td>
<td>5.3–85.3</td>
<td>0–70.8</td>
<td>0.8–90.6</td>
<td>0.8–90.6</td>
<td>2.8–60.0</td>
<td>10.2–48.4</td>
</tr>
</tbody>
</table>

\(^{a}\)Complete responses were observed in patients with SCLC and RCC; partial responses in patients with anaplastic thyroid carcinoma, NSCLC, RCC, and SCCHN.

\(^{b}\)Calculated using the Clopper Pearson method.

CI, confidence interval; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; SCCHN, squamous cell carcinoma of the head and neck; SCLC, small-cell lung cancer.
Figure legends

Figure 1. (A) Waterfall plot of best changes (%) from baseline in target lesions. Other tumors included sarcoma, melanoma, colon cancer, and thymic cancer (n = 1 each). One patient with NSCLC had an unconfirmed PR. Star (*) signs indicate the 3 patients (with sarcoma, SCCHN, and melanoma) who had previously received a PD-1 blocking agent. (B) Duration of treatment in confirmed responders. The patient with thyroid cancer experienced disease-related global deterioration of health. CR, complete response; NSCLC, non-small-cell lung cancer; PD, progressive disease; PR, partial response; RCC, renal cell carcinoma; SCCHN, squamous cell carcinoma of the head and neck; SCLC, small-cell lung cancer; SD, stable disease.

Figure 2. Tumor imaging of complete response in a patient with SCLC (A; utomilumab 5 mg/kg + pembrolizumab 2 mg/kg; cycle 13 versus baseline) and partial response in a patient with NSCLC (B; utomilumab 0.45 mg/kg + pembrolizumab 2 mg/kg; cycle 32 versus baseline).

Figure 3. (A) Levels of soluble IFN-γ on day 1, cycle 5 at 6 and 24 hours postdose. IFN-γ, interferon-γ. (B) Levels of peripheral circulating cell subsets at day 1 cycle 5: lymphocytes, activated CD8+ T cells, memory CD8+ T cells, and effector memory T cells.
2a Baseline: 4/22/15
Cycle 13: 1/4/16

2b Baseline: 10/29/2014
Cycle 32: 9/9/2016
Clinical Cancer Research

Phase Ib Study of Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Combination with Pembrolizumab (MK-3475) in Patients with Advanced Solid Tumors

Anthony W Tolcher, Mario Sznol, Siwen Hu-Lieskovan, et al.

Clin Cancer Res Published OnlineFirst June 20, 2017.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-17-1243

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2017/06/20/1078-0432.CCR-17-1243.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.