Combination therapy with NHS-muIL12 and avelumab (anti-PD-L1) enhances antitumor efficacy in preclinical cancer models

Chunxiao Xu*, Yanping Zhang, P. Alexander Rolfe, Vivian M. Hernández, Wilson Guzman, Giorgio Kradjian, Bo Marelli, Guozhong Qin, Jin Qi, Hong Wang, Huakui Yu, Robert Tighe, Kin-Ming Lo, Jessie English, Laszlo Radvanyi, Yan Lan*

Immuno-Oncology Translational Innovation Platform, EMD Serono Research and Development Institute, Billerica, MA 01821, USA

Running Title: NHS-muIL12 and avelumab preclinical combination studies

Keywords: checkpoint inhibitor, anti-PD-L1, immunocytokine, NHS-IL12, immunotherapy

Financial Support: This study was sponsored by Merck KGaA, Darmstadt, Germany. Avelumab is being developed through an alliance between Merck KGaA and Pfizer, Inc., NY, USA.

*Corresponding author:
Chunxiao Xu, PhD; EMD Serono Research and Development Institute; 45 Middlesex Turnpike, Billerica, MA, 01821; E-mail: Chunxiao.xu@emdserono.com

Yan Lan, MD; EMD Serono Research and Development Institute; 45 Middlesex Turnpike, Billerica, MA, 01821; E-mail: yan.lan@emdserono.com
Translational Relevance

Anti-PD-1 and anti-PD-L1 immune checkpoint inhibitors have induced durable antitumor immune responses in patients with advanced-stage cancers; however, many patients do not benefit due to insufficient immune cell activation and infiltration into tumors. One approach to addressing this problem is through treatment with exogenous proinflammatory cytokines, such as interleukin 12 (IL-12). Here, we show that a tumor-targeting murine IL-12 fusion protein containing an anti-DNA antibody (NHS-muIL12), previously demonstrated to accumulate in necrotic areas within tumors, shows promising anti-tumor effects in combination with the anti-PD-L1 antibody avelumab. NHS-muIL12 synergized with avelumab to induce tumor regression, which was associated with enhanced immune cell infiltration and effector and memory T cell development. Our findings indicate that NHS-muIL12 alters the tumor microenvironment by enhancing immune cell infiltration and sensitizing tumors to the effects of avelumab therapy, and support clinical trials assessing the combination of NHS-IL12 and avelumab for the treatment of solid tumors.
Abstract

Purpose: To determine if combination therapy with NHS-muIL12 and the anti-PD-L1 antibody avelumab can enhance anti-tumor efficacy in preclinical models relative to monotherapies.

Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and μM- mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and immunohistochemistry. Immune gene expression in tumor tissue was profiled by Nanostring assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFN-γ-producing CD8+ T cells was evaluated by ELISpot assay.

Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8+ T cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8+ T cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy.

Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors.
Introduction

Tumor cells often exploit normal physiological pathways to evade immune surveillance. Programmed death ligand 1 (PD-L1) is commonly upregulated in various tumors and tumor-infiltrating immune cells (1) and promotes a host of immunosuppressive effects upon binding to its receptor, programmed death 1 (PD-1), or to the costimulatory molecule CD80 (B7.1). These effects include stimulating the development of regulatory T cells (Tregs) (1,2), promoting the exhaustion and apoptosis of activated T cells (3), and preventing the priming and activation of cytotoxic T lymphocytes (CTLs) and their recruitment to the tumor (4).

Blockade of the PD-1/PD-L1 pathway can inhibit these immunosuppressive effects, thereby restoring the endogenous anti-tumor immune response. In the clinic, immunotherapies targeting PD-1/PD-L1 have been effective in inducing durable, complete responses in a subset of patients (5-9). However, many patients do not benefit from treatment due to resistance to anti-PD-1/PD-L1 therapies. Although molecular mechanisms of intrinsic resistance are complex and vary by indication, one important mechanism occurs through the lack of immune cell infiltration in the tumor, which is associated with poor prognosis and predicts an incomplete response to immunotherapy (10). Thus, combination of anti-PD-1/PD-L1 with other immunomodulators promoting immune cell infiltration into the tumor microenvironment is a rational strategy to overcome resistance and improve therapeutic responses.

One such therapeutic agent is the proinflammatory cytokine IL-12, which plays a critical role in regulating the transition from innate to adaptive immunity. IL-12 is released locally by activated phagocytes and dendritic cells during T-cell priming (11) and acts directly on cytotoxic immune
effector cells, including natural killer (NK) cells, natural killer T (NKT) cells, and CD8$^+$ T cells, to stimulate their proliferation and increase their cytotoxic functions (12). IL-12 also induces the differentiation of naïve T helper (Th) cells towards a Th1 phenotype and the production of cytokines (most notably interferon gamma [IFN-γ]) that promote cell-mediated immunity (13). By amplifying these positive immunostimulatory effects, therapeutic administration of exogenous IL-12 has the potential to promote effective antitumor immune responses.

Intra-tumoral injection of IL-12 in pre-clinical models was found to trigger a potent anti-tumor CD8$^+$ cytotoxic T-lymphocyte (CTL) response that regressed large, established tumors (14). However, initial clinical trials using systemically administered recombinant human IL-12 were disappointing due to schedule-dependent toxicity mediated by high proinflammatory cytokine production (15). One way to minimize toxicity is to target IL-12 to tumors via an antibody-cytokine fusion protein (“immunocytokine”). NHS-IL12 is a recombinant fusion protein consisting of the human monoclonal IgG1 antibody NHS76 fused at each CH3 C-terminus to human interleukin-12 (IL-12) (16). NHS76 targets exposed DNA, thereby directing the proinflammatory cytokine IL-12 to intratumoral necrotic regions (17). NHS-IL12 was thus designed to alleviate the safety concerns associated with systemic administration of recombinant IL-12 and to improve its pharmacokinetics (17). Indeed, NHS-IL12 treatment proved to be well-tolerated and showed preliminary evidence of clinical benefit in a phase I trial (NCT01417546).

Since human IL-12 is not cross-reactive with the murine IL-12 receptor, the chimeric surrogate immunocytokine NHS-muIL12, which consists of murine IL-12 fused to the same human NHS76 antibody, was generated. NHS-muIL12 allows evaluation of the pharmacological activity
of the immunocytokine in immunocompetent tumor-bearing mice. In earlier studies, NHS-muIL12 accumulated in necrotic regions of tumors and exhibited superior tumor control relative to recombinant IL-12 in multiple murine models (17). In this study, we evaluated the activity of NHS-muIL12 in combination with avelumab, a fully human anti-PD-L1 IgG1 antibody that binds to human and murine PD-L1 and blocks its interaction with PD-1 (18,19). Avelumab has antitumor activity in murine tumor models and in clinical trials across multiple tumor indications, and was recently approved for treatment of Merkel cell carcinoma (20) and urothelial carcinoma (21). The data presented here demonstrate that the complementary immune-stimulatory effects of avelumab and NHS-muIL12 in combination enhanced antitumor activity over either treatment alone in two preclinical tumor models. A clinical trial evaluating combination therapy with NHS-IL12 and avelumab is currently being conducted (NCT02994953).

Materials and Methods

Mice

BALB/c mice were purchased from Charles River Laboratories and B6.129S2-Ighm
tm1Cgn/J (µM⁻) mice were purchased from Jackson Laboratory. All procedures were performed in accordance with institutional protocols approved by the Institutional Animal Care and Use Committee (IACUC) of EMD Serono Research and Development Institute.

Cell lines
EMT-6 and 4T1 breast cancer cell lines were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). The MC38 colon carcinoma cell line was provided by the Scripps Research Institute. All cell lines were tested and verified to be free of *Mycoplasma*.

Treatments

The inactive anti-PD-L1 control (hereafter referred to as isotype control) is a mutated anti-PD-L1 antibody without the ability to bind PD-L1. Avelumab, isotype control, and NHS-muIL12 (17) were produced and purified at EMD Serono.

Murine tumor models

Murine tumor models

To generate the EMT-6 tumor model, BALB/c mice were inoculated with 0.5×10^6 EMT-6 tumor cells orthotopically in the mammary fat pad. To generate the MC38 tumor model, μMt− mice were inoculated subcutaneously (s.c.) with 0.5×10^6 MC38 cells into the right flank.

Re-challenge with orthotopic mammary tumors.

For tumor re-challenge studies, mice with complete remission of their EMT-6 tumors for over 3 months after the last treatment of NHS-muIL12 (2 or 10 μg) and avelumab (200 μg) combination therapy were injected with 1×10^6 EMT-6 tumor cells or 0.5×10^5 4T1 tumor cells into the opposite mammary pad from the original tumor site. As a control, naïve BALB/c mice were injected with tumor cells in the mammary pad.

In vivo treatments
Mice were randomized into treatment groups when tumors reached the desired volume (day 0) and treatment was initiated on day 0. Avelumab or isotype control were injected i.v. in 200 μL PBS on days 0, 3, and 6 for EMT-6 tumor-bearing mice and on days 0, 4, 7, 11, 14, 18, and 21 for MC38 tumor-bearing mice. NHS-muIL12 was injected as a single s.c. dose in 200 μL PBS on day 0.

ELISpot Assay

ELISpot assay was performed to evaluate the frequency of IFN-γ producing CD8+ T cells reactive to the tumor antigen p15E.

Flow Cytometry

Fluorescence activated cell sorting (FACS) staining was performed on dissociated spleens and tumors using standard procedures. FACS was performed on a MACSQuant® Analyzer 10, and quantified using FlowJo® software.

Immunohistochemistry

Immunohistochemistry was performed by Bioscience Solutions Group (Concord, MA, USA) using the avidin-biotin complex (ABC) method. The following primary antibodies were used: anti-mouse CD8 (Novus, Cat #AP-MAB0708) and anti-PD-L1 (Cell Signaling, Cat #13684). Hematoxylin and eosin (H&E) staining was also performed.
NanoString analysis

The NanoString® PanCancer Immune Profiling panel was used to evaluate whole tumor mRNA expression and R software was used to analyze data and generate plots. Background levels were calculated and subtracted from the samples, which were then normalized against the positive control and housekeeping gene probes. Normalized counts were analyzed using the default settings of DESeq2. Data are available in Gene Expression Omnibus (GEO) as accession number GSE93192. Heatmaps were produced with the pheatmap package and the sample order was set with a callback using optimal leaf ordering from the seriation package.

Plasma cytokine quantification by multiplex cytokine assay

Plasma cytokines were quantified at Eve Technologies Corp. using the Mouse Cytokine Array/Chemokine Array 32-Plex assay kit (Millipore, St. Charles, MO, USA) according to the manufacturers’ instructions.

Plasma IFN-γ quantification by ELISA

Plasma IFN-γ was quantified using a mouse IFN-γ Duoset ELISA kit (R&D Systems, Cat #DY485) following the manufacturer’s instructions and read on a Synergy Biotek plate reader (Biotek).

Plasma kynurenine quantification by LC-MS/MS
Plasma kynurenine concentrations were determined by high performance liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The assay and analysis were performed at the Center for Analytical Services of Merck KGaA (Darmstadt, Germany).

Statistical analysis

Line and bar graphs show mean and standard error of the mean (SEM); other graphs show data from individual mice (symbols) and means (horizontal line). Differences between treatment groups were determined by one- or two-way ANOVA followed by Bonferroni’s posttest. A Kaplan-Meier plot was generated to show survival by treatment group and significance was assessed by log-rank (Mantel-Cox) test. Analyses were performed using GraphPad Prism 6-7 and differences were determined to be significant if \(p<0.05 \).

Additional details about procedures, culture conditions, and statistical analyses can be found in the Supplementary Materials and Methods.

Results

NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to monotherapies and induced long-term protective immunity

To investigate the antitumor efficacy of combination therapy with NHS-muIL12 and avelumab, BALB/c mice bearing orthotopic EMT-6 tumors (~100 mm\(^3\)) were given a single s.c. dose of NHS-muIL12 (2 or 10 \(\mu \)g, day 0) alone or in combination with three i.v. doses (days 0, 3, 6) of avelumab (200 \(\mu \)g) \(n = 8 \) mice/group. NHS-muIL12 was administered s.c. because it is the
method of administration being used in clinical studies with NHS-IL12. This was based on the preclinical finding that s.c. administration of NHS-muIL12 resulted in comparable levels of tumor uptake and reduced levels of liver uptake relative to i.v. administration, suggesting s.c. administration could have comparable efficacy with lower toxicity (17). An isotype control antibody was administered at the same dose and schedule as avelumab.

The higher dose of NHS-muIL12 (10 μg) significantly inhibited EMT-6 tumor growth compared to isotype control treatment (T/C=35%; p<0.0001; day 17) (Fig. 1A and B). Although neither the lower dose of NHS-muIL12 (2 μg) (T/C=73%, day 17) nor avelumab (200 μg) monotherapy (T/C=62%, day 17) significantly inhibited tumor growth, combination of the two therapies elicited a synergistic antitumor effect (T/C=6%, day 17) relative to either monotherapy (p<0.0001 for both, day 17) (Fig. 1A and B). Combination therapy with the higher dose of NHS-muIL12 and avelumab further inhibited tumor growth (T/C=17%, day 17) relative to treatment with 10 μg NHS-muIL12 (p=0.0002, day 17) or avelumab (p<0.0001, day 17) alone (Fig. 1A and B).

The combination therapy with avelumab and NHS-muIL12 (2 or 10 μg) also prolonged survival in EMT-6 tumor-bearing mice (p<0.0001, log-rank [Mantel-Cox] test) (Fig. 1C). Complete tumor regression was observed in 7/8 (88%) mice treated with either of the combination therapies (median survival>80 days), compared to 0/8 (0%) mice treated with isotype control (median survival=17 days), 0/8 (0%) mice treated with 2 μg NHS-muIL12 (median survival=20 days), 2/8 (25%) mice treated with 10 μg NHS-muIL12 (median survival=33.5 days) and 1/8 (13%) mice treated with avelumab (median survival=23 days) (Fig. 1C).
A series of tumor rechallenge experiments were performed on mice that had displayed complete EMT-6 tumor regression for more than 3 months following combination therapy (‘combination therapy-cured’) to assess whether tumor-specific immune memory had been established. When combination therapy-cured mice ($n = 20$) were rechallenged with EMT-6 cells (s.c), no tumor growth was observed, whereas naïve mice ($n = 8$) inoculated with EMT-6 cells rapidly developed tumors ($p<0.0001$, day 28) (Fig. 1D). However, combination therapy-cured mice ($n = 5$) challenged with 4T1 mammary tumor cells (s.c.) developed tumors at the same rate as naïve mice ($n = 8$) ($p>0.05$, day 28) (Fig. 1D). Taken together, these data indicate that the combination therapy with NHS-muIL12 and avelumab induced the generation of tumor antigen-specific immune memory.

We next tested the antitumor efficacy of NHS-muIL12 and avelumab combination therapy in larger, more-established EMT-6 tumors (300-450 mm3). Neither 0.5 μg NHS-muIL12 nor avelumab (200 μg) monotherapies inhibited tumor growth 8 days after treatment initiation, and treatment with 10 μg NHS-muIL12 only moderately decreased the mean tumor volume (32.2±51.6 mm3 decrease between days 0 and 8; $p>0.05$) (Supplementary Figure S1A). In contrast, treatment with the combination of NHS-muIL12 (10 μg) and avelumab (200 μg) significantly reduced mean tumor volume (179.1±86.5 mm3 decrease between days 0 and 8; $p=0.0385$) (Supplementary Figure S1A). In addition, tumor volume at day 8 was decreased in 6/8 mice (75%) after combination therapy with 10 μg NHS-muIL12 and avelumab, 2/8 mice (25%) after combination therapy with 0.5 μg NHS-muIL12 and avelumab, and 5/8 mice (62.5%) after 10 μg NHS-muIL12 monotherapy. Tumor regression was not observed in any of the mice.
treated with avelumab, NHS-muIL12 (0.5 μg), or the isotype control alone (Supplementary Figure S1B).

The antitumor efficacy of the combination therapy was then evaluated in the MC38 colon carcinoma model in B cell-deficient μMt⁻ mice. Avelumab was administered on a repeat dosing schedule (400 μg, days 0, 4, 7, 11, 14, 18, and 21) to promote a sustained anti-tumor immune response. To prevent the induction of an immunogenic response to avelumab at this extended dosing schedule, B cell-deficient mice were used. In these experiments, μMt⁻ mice bearing s.c. MC38 tumors (~50 mm³) were given a single dose of NHS-muIL12 alone (2 or 10 μg, day 0) or in combination with avelumab. The isotype control was administered at the same dose and schedule as avelumab. Tumor growth was not significantly inhibited by avelumab (T/C=74%, day 21) or NHS-muIL12 (2 μg or 10 μg) (T/C=55% and 39%, respectively, day 21) monotherapies compared to isotype control (Fig. 2A and B). Combination treatment with avelumab and NHS-muIL12 (2 μg or 10 μg) enhanced antitumor efficacy (T/C=19% and 10%, day 21) compared to avelumab (p<0.0001 for both, day 21) and NHS-muIL12 (p=0.0006 and p=0.0001, respectively, day 21) monotherapies. Combination treatment with avelumab and NHS-muIL12 (2 μg or 10 μg) also extended survival in MC38 tumor-bearing mice (Fig. 2C), resulting in longer median survival times (35.5 and 36.5 days, respectively) than those of mice treated with avelumab (23.5 days) or NHS-muIL12 (2 μg or 10 μg) (28 and 29.5 days, respectively). The results in both EMT-6 and MC38 models demonstrate that combination treatment with NHS-muIL12 and avelumab is superior to either monotherapy in inhibiting tumor growth.
NHS-muIL12 and avelumab combination treatment elicited changes in immune phenotype in tumor-bearing mice

To further delineate the mechanism by which NHS-muIL12 and avelumab combination therapy enhanced antitumor activity, immune phenotypic signatures were determined via flow cytometry. In EMT-6 tumor-bearing BALB/c mice, NHS-muIL12 monotherapies enhanced proliferation of splenic NK and CD8$^{+}$ T cells in a dose-dependent manner (Fig. 3A). Combination treatment with NHS-muIL12 (10 μg) and avelumab further enhanced the proliferation of splenic NK and CD8$^{+}$ T cells relative to NHS-muIL12 (p=0.0125 and p=0.0261, respectively) or avelumab (p<0.0001 and p=0.0347, respectively) monotherapies (Fig. 3A). Similarly, in MC38 tumor-bearing μMt mice, combination treatment with NHS-muIL12 (10 μg) and avelumab increased the percentage of proliferating CD8$^{+}$ T cells in the spleen (p<0.0001) and tumor (p=0.0021) relative to NHS-muIL12 monotherapy (Supplementary Fig. 2A).

In EMT-6 tumor-bearing mice, combination treatment with NHS-muIL12 (10 μg) and avelumab significantly increased splenic effector memory T (T_{EM}) cell frequency relative to NHS-muIL12 and avelumab monotherapies (p=0.0077 and 0.0084, respectively) and trended toward an increase in splenic central memory T (T_{CM}) cell frequency (Fig. 3B). Similarly, in MC38 tumor-bearing mice, combination therapy increased splenic T_{EM} cell frequency relative to NHS-muIL12 (p<0.0001) and avelumab (p<0.0001) monotherapies, and showed a trend towards increasing T_{EM} cells in tumor relative to monotherapies (Supplementary Fig. 2B).

We next examined the effect of combination therapy on the expression of T-bet, a transcription factor involved in several immune functions, including CD8$^{+}$ T cell differentiation and
cytotoxicity, sustaining memory T cell subsets, and NK cell maturation (22,23). NHS-muIL12 monotherapy increased the percentage of T-bet$^+$ NK cells and T-bet$^+$ CD8$^+$ T cells in the spleens of EMT-6 tumor-bearing BALB/c mice (Fig. 3C) and MC38 tumor-bearing μMt$^-$ mice (Supplementary Fig. 2C) in a dose-dependent manner. In EMT-6 tumor-bearing mice, combination therapy with NHS-muIL12 (10 μg) and avelumab significantly enhanced T-bet expression in NK and CD8$^+$ T cells relative to avelumab monotherapy (p<0.0001, both) and in NK cells relative to NHS-muIL12 monotherapy (p=0.0090) (Fig. 3C). Similarly, in MC38 tumor-bearing mice, combination therapy (with 10 μg NHS-muIL12) significantly enhanced T-bet expression relative to avelumab in both spleen and tumor (p=0.0008 and p=0.0435), and relative to NHS-muIL12 in both spleen and tumor (p<0.0001, both) (Supplementary Fig. 2C).

Tumor associated macrophages (TAMs) play complex roles in tumorigenesis. The M1 (classically activated macrophage) subpopulation of TAMs highly expresses major histocompatibility complex class II (MHC II) and exerts anti-tumor effects through secretion of proinflammatory factors. The M2 (alternatively activated macrophage) subpopulation of TAMs has low MHC II expression and can promote the growth, invasion, and metastasis of tumors through the expression of inhibitory signaling molecules (24,25). Combination of NHS-muIL12 (10 μg) and avelumab did not change MHC II$^{\text{low}}$ or MHC II$^{\text{high}}$ TAM frequency relative to NHS-muIL12 alone in EMT-6 (Fig. 3D) or MC38 tumor-bearing mice (Supplementary Fig. 2D). However, relative to avelumab, combination therapy decreased the frequency of MHC II$^{\text{low}}$ macrophages (p=0.0002) and increased the frequency of MHC II$^{\text{high}}$ macrophages in the spleen (p=0.0008) of EMT-6 tumor-bearing mice (Fig. 3D). Similarly, in MC38 tumor-bearing mice, combination therapy increased the frequency of MHC II$^{\text{high}}$ macrophages relative to avelumab in
both the spleen and tumor (p<0.0001, both) (Supplementary Fig. 2D). These results indicate that NHS-muIL12 was the main driver of the polarization towards an M1 TAM phenotype in the combination therapy with avelumab.

To evaluate tumor antigen-specific T cell activation after combination therapy, we measured the response of splenic CD8^+ T cells from MC38 tumor-bearing mice to the murine tumor antigen p15E (presented by antigen presenting cells) in ELISpot assays. Combination therapy with avelumab and NHS-muIL12 (2 μg or 10 μg) resulted in a synergistic increase in the frequency of p15E-reactive IFN-γ-producing CD8^+ T cells relative to avelumab (p<0.0001, both) and NHS-muIL12 (p<0.0001, both) (Supplementary Fig. 3A and B).

NHS-muIL12 treatment enhanced CD8^+ T cell infiltration in tumors

We next asked whether the increase in splenic CD8^+ T cell proliferation and maturation seen with NHS-muIL12 and avelumab combination treatment would translate to an increase in CD8^+ T cell infiltration in EMT-6 orthotopic tumors. Tumor-bearing mice were treated with avelumab (200 μg, i.v.) on days 0 and 3, and/or NHS-muIL12 (2 μg or 10 μg, s.c.) on day 0. Immunohistochemical analysis of tumors showed that treatment with NHS-muIL12, alone or in combination with avelumab, dose-dependently increased CD8^+ T cell infiltration in tumors relative to treatment with the isotype control (10 μg NHS-muIL12+avelumab: 26.1±7.7% CD8^+ cells; isotype control: 4.7±1.7% CD8^+ cells; p=0.0118) (Fig. 4A and B). However, there was no significant difference in infiltrated CD8^+ T cell frequency between NHS-muIL12 monotherapy (10 μg) and combination therapy with NHS-muIL12 and avelumab, suggesting that the increase in CD8^+ T cell infiltration was attributable to NHS-muIL12 therapy.
We next examined tumor infiltrating lymphocytes (TILs) in H&E-stained EMT-6 tumor sections from mice treated with the isotype control. TILs were identified by their small, distinctive nuclear morphologies, and were found to surround, rather than infiltrate, areas of high tumor cell density (Supplementary Fig. 4A). Immunohistochemistry of matching sections demonstrated that TILs, but not tumor cells, expressed high levels of PD-L1 (Supplementary Fig. 4B). Furthermore, TIL ‘hotspots’ were present within well-defined areas of focal necrosis, identified by the absence of stained tumor cell nuclei (Supplementary Fig. 4A). Both NHS-muIL12 (2 or 10 μg) and avelumab monotherapies increased the necrotic fraction of EMT-6 tumors relative to isotype control treatment (Supplementary Fig. 5). Combination treatment with NHS-muIL12 (2 or 10 μg) and avelumab further increased the necrotic fraction compared with either monotherapy (Supplementary Fig. 5), consistent with the enhanced tumor regression observed after combination therapy.

NHS-muIL12 and avelumab combination treatment elevated immune gene expression in the tumor and cytokine levels in the plasma

To further investigate the mechanism by which combination therapy enhanced antitumor efficacy, we examined immune-associated gene expression in the tumors and cytokine expression in the plasma of EMT-6 tumor-bearing mice treated with NHS-muIL12 and/or avelumab. Tumor mRNA was harvested 5 days after treatment initiation and immune gene expression was profiled by NanoString PanCancer Immune Panels (see Supplementary Methods for data analysis protocol).
Compared to isotype control treatment, combination therapy with 10 μg NHS-muIL12 and avelumab (200 μg) resulted in differential expression (defined as p<0.05 and log fold-change>1) of 138 of 770 genes evaluated. Combination therapy with the low dose of NHS-muIL12 induced nearly as many differentially expressed genes (120) relative to isotype control. In contrast, NHS-muIL12 monotherapy (2 μg and 10 μg) resulted in differential expression of only 7 and 45 genes, respectively, while avelumab monotherapy resulted in differential expression of only 1 gene. These data indicate that combination therapy elicited changes in expression of more genes than avelumab or NHS-muIL12 monotherapies (Fig. 5A).

A linear model analysis (26) accounting for both avelumab and NHS-muIL12 treatments was performed to determine their effects across all treatment groups. This analysis revealed that NHS-muIL12 contributed to the majority of gene expression changes observed after combination therapy with NHS-muIL12 and avelumab, particularly in genes that were upregulated (Fig. 5A, green boxes). The linear model analysis also showed that avelumab affected expression of a number of genes, primarily through downregulation of gene expression. Among the genes upregulated after NHS-muIL12 monotherapy or after combination therapy with NHS-muIL12 and avelumab were genes involved in innate and adaptive immune responses and cytokine and chemokine genes (Supplementary Figures 6).

To determine which functional pathways were affected after combination therapy, Metacore™ pathway analysis was performed. Genes upregulated after combination therapy included those involved in leukocyte chemotaxis (e.g., IP-10, MIG), antigen presentation by MHC class II (e.g., Cathepsin S, HLA-DRA1), and Fc gamma receptor-mediated phagocytosis (e.g., Fc gamma RI,
Fc gamma RII alpha) (Supplementary Figure 7). Combination therapy also upregulated expression of genes associated with IL-10 signaling (e.g., iNOS, IL10RA), consistent with the known induction of IL-10 by IL-12 (27). Pathways with genes downregulated after combination therapy included those involved in naïve CD4+ T cell differentiation, particularly in Th17 differentiation and signaling (e.g., IL-17F, IL-23, IL-21), consistent with previous reports showing that IL-12 inhibits the development of Th17 cells (28) (Supplementary Figure 7).

Cancer immunotherapies have the potential to affect the expression of a broad range of cytokines downstream of their initial targets. These include Th1 cytokines, which promote antitumor activity through the activation of cytotoxic lymphocytes (CTL & NK cells) (29), Th2 cytokines, which can induce a state of inflammation in the tumor microenvironment that has been associated with tumor tolerance (29), and chemokines, which can attract immune cells to the tumor. A multiplex cytokine assay was performed to monitor cytokine levels in plasma samples collected 2 days after treatment with a single dose of NHS-muIL12 (0.5 or 5 μg) alone or in combination with avelumab (200 μg) or isotype control (200 μg) (Fig. 5B).

Combination treatment with NHS-muIL12 (5 μg) and avelumab (200 μg) enhanced levels of several cytokines compared with NHS-muIL12 (0.5 or 5 μg) or avelumab treatment alone (Fig. 5B). The combination therapy strongly induced the Th1 cytokine IFN-γ, which is known to be potently induced by IL-12 and is considered an important mediator of its antitumor activity (12), relative to NHS-muIL12 (5 μg) monotherapy (10.6-fold increase; p<0.0001). Also increased relative to NHS-muIL12 was the proinflammatory cytokine TNFα, which mediates anti-tumor effects through damaging tumor vasculature and promoting T cell and NK cell cytotoxicity (3.1-
fold increase; p<0.0001) (30,31). The combination therapy also increased levels of Th2 cytokines, including IL-5, IL-6, and IL-10, which have been associated with pro-tumor inflammatory responses (32), relative to NHS-muIL12 alone (8.1-fold, 1.8-fold, and 1.8-fold increases, respectively; p<0.0001, p=0.0369, and p<0.0001, respectively).

Chemokines involved in tumor inflammation were also upregulated in the plasma of mice following combination therapy with NHS-muIL12 and avelumab. For example, CXCL9 and CXCL10, which are known to be induced by IL-12 (33), are involved in the chemotactic recruitment of CTLs and are considered to contribute to the antitumor effects of IL-12 therapy through inhibition of tumor neovascularization (33). Combination therapy (with the high dose of NHS-muIL12) significantly increased both CXCL9 and CXCL10 plasma levels relative to NHS-muIL12 monotherapy (1.4-fold and 1.8-fold increase, respectively; p=0.0406 and p<0.0001, respectively) (Fig. 5B).

NHS-muIL12 and avelumab combination treatment elevated IFN-γ expression but did not significantly affect kynurenine levels or Treg percentages relative to NHS-muIL12 monotherapy

IFN-γ is known to induce indoleamine 2,3-dioxygenase (IDO), an enzyme that inhibits antitumor responses through the depletion of the essential amino acid tryptophan and the production of its catabolite, kynurenine (Kyn) (34). Increased Kyn levels appear to play an important role in the induction of Tregs and immune suppression (34,35).
To investigate the potential effects of the combination therapy on this immunosuppressive pathway, we assessed IFN-\(\gamma\) in the plasma of EMT-6 tumor-bearing mice 5 and 10 days after treatment with NHS-muIL12 (0.5 or 10 \(\mu\)g) and/or avelumab (200 \(\mu\)g). Avelumab did not significantly increase IFN-\(\gamma\) levels, while NHS-muIL12 (10 \(\mu\)g) induced a moderate increase at day 5 (\(p<0.0001\)). Combination therapy with NHS-muIL12 (10 \(\mu\)g) and avelumab markedly increased IFN-\(\gamma\) levels relative to NHS-muIL12 (10 \(\mu\)g) (\(p<0.0001\), 2.75-fold increase) (Fig. 6A). By day 10, IFN-\(\gamma\) was undetectable for all treatment groups.

Consistent with the induction of IFN-\(\gamma\), NHS-muIL12 (10 \(\mu\)g) treatment significantly increased Kyn levels at both day 5 and 10 relative to isotype control (\(p<0.0001\) and \(p=0.0004\), respectively). Combination therapy with 10 \(\mu\)g NHS-muIL12 and avelumab did not further increase Kyn levels compared to 10 \(\mu\)g NHS-muIL12 monotherapy (Fig. 6B), indicating that avelumab in the combination therapy does not contribute to further increases in Kyn levels.

Since Kyn accumulation can promote Treg differentiation, FACS was performed to determine the frequency of Tregs in the tumor. However, neither NHS-muIL12 (10 \(\mu\)g) or avelumab monotherapies, nor combination therapy with NHS-muIL12 and avelumab, significantly increased the percentage of Tregs on day 5 or 10 (Fig. 6C). These data show that although the combination therapy increased IFN-\(\gamma\) levels relative to NHS-muIL12 (10 \(\mu\)g) monotherapy, it did not increase Kyn levels or the percentage of Tregs compared to NHS-muIL12 monotherapy.

Discussion
In this study, the antitumor efficacy of combination treatment with avelumab and NHS-muIL12 was investigated in murine tumor models. Treatment with NHS-muIL12 and avelumab elicited an enhanced antitumor effect relative to either monotherapy in both the EMT-6 model and the MC38 model. Most EMT-6 tumor-bearing mice treated with the combination therapy had complete tumor regression and developed tumor-specific immune memory, as demonstrated by their protection against rechallenge with EMT-6 tumor cells and the significant induction of effector and memory T cells. This is consistent with avelumab and NHS-muIL12 monotherapy-induced memory responses (17,19).

Although anti-PD-1/PD-L1 monotherapies have shown durable antitumor effects in patients with advanced cancer, they are ineffective in certain patients due to a lack of immune cell infiltrates in the tumors. This represents a major obstacle to effective treatment with anti-PD-1/PD-L1 (36,37). The combination treatment with NHS-muIL12 and avelumab dose-dependently stimulated cytotoxic NK and CD8$^+$ T cell proliferation and induced CD8$^+$ T cell infiltration into the tumor microenvironment, consistent with previous immune cell depletion studies demonstrating that the anti-tumor effects of NHS-muIL12 and avelumab monotherapies depend primarily on CD8$^+$ T cells (17,19). Importantly, NHS-muIL12 treatment accounted for the majority of the CD8$^+$ T cell infiltration seen in EMT-6 tumors after combination treatment, supporting the hypothesis that NHS-muIL12 therapy promotes a T cell-inflamed tumor microenvironment that is more sensitive to avelumab therapy.

The strong induction of Th1 cytokines by the combination therapy with avelumab and NHS-muIL12 likely contributes to its potent antitumor activity. The Th1 cytokine IFN-γ stimulates
cytotoxic T cell and NK cell responses via STAT1 signaling, setting off a cascade of events that inhibit cell growth and promote tumor cell death (38). IFN-γ also induces two key chemokines, CXCL10 and CXCL9, which drive effector CD8^+ T-cell migration into tumors via CXCR3 (39). Although IFN-γ is known to be a key orchestrator of anti-tumor cellular immunity, the roles of other Th1 cytokines, such as TNF-α, in mediating the anti-tumor effect of combination therapy with avelumab and NHS-muIL12 require further investigation. Recently, patients identified as non-responders to immune checkpoint inhibitors were found to harbor tumors with genomic defects in IFN-γ and STAT1 signaling pathways (40). One outstanding question is the degree to which IL-12 therapy, alone or in combination with avelumab, is dependent on IFN-γ and STAT1 signaling, and whether the combination therapy can be as effective in patients with deficits in IFN-γ-STAT1 signaling.

In addition to inducing IFN-γ and other Th1 cytokines, NHS-muIL12, alone and in combination with avelumab, induced Th2 cytokines, such as IL-10 and IL-5. Although IL-12 therapy has been shown to strongly promote the release of Th1 cytokines, particularly IFN-γ, it is also known to self-limit excessive proinflammatory activity through the induction of immunosuppressive Th2 cytokines, such as IL-10, which limit the immune response to prevent damage to the host (29,32,41). However, IL-10 also has an emerging role in driving anti-tumor effector CD8^+ T-cell responses (42,43). Indeed, IL-10 was recently found to enhance the survival and effector function of tumor-infiltrating CD8^+ T cells by enhancing IFN-γ and MHC class I expression in tumors through a STAT3-mediated mechanism (42,43) and, along with IL-21, was found to induce central memory CD8^+ T-cell differentiation (44). IL-10 has also been shown to synergize with IL-12 to enhance survival in tumor-bearing mice when both cytokines are administered in
combination (45). Thus, the induction of both Th1 cytokines and Th2 cytokines by NHS-muIL12 and avelumab combination therapy may not only represent an important balance between the antitumor immune response and the prevention of damaging autoimmunity, but may induce a multi-faceted positive feedback response reinforcing differentiated CD8\(^+\) CTL responses at the tumor site.

Another consideration in IL-12 treatment and T-cell checkpoint blockade is the role of increased IDO activity as a potential mechanism of adaptive resistance. IDO catabolizes tryptophan in the tumor microenvironment, leading to accumulation of Kyn and its metabolites (46). The data presented here show that NHS-muIL12, alone or in combination with avelumab, induced an increase in plasma Kyn levels, indicating induction of IDO, which is an IFN-\(\gamma\)-induced gene (47). IDO serves as an anti-inflammatory signaling system that limits potentially damaging autoimmune responses in part through the induction of tolerogenic dendritic cells (DCs) that induce Treg expansion (48). These IDO-mediated events may self-limit the pro-inflammatory effects of IL-12 (49). However, although NHS-muIL12 drove Kyn accumulation in our tumor models, combining NHS-muIL12 with avelumab did not further increase plasma Kyn levels, nor did it increase the percentage of immunosuppressive Tregs relative to NHS-muIL12 alone. These findings suggest that blockade of PD-L1 does not exacerbate IDO-driven negative feedback effects of IL-12.

In summary, our preclinical data demonstrate that NHS-muIL12 alters the tumor microenvironment by increasing the infiltration of immune cells to enhance immunogenicity. Thus, NHS-IL12 may switch less T-cell-inflamed “cold” tumor to an immune-responsive, more
T-cell-inflamed “hot” tumor, and thereby render the tumor more sensitive to the effects of avelumab treatment. These findings support a combination immunotherapy of NHS-IL12 and avelumab in clinical trials for the treatment of solid tumors.

Acknowledgements

The authors would like to thank Molly Jenkins for assistance with manuscript preparations and the Center for Analytical Services of Merck KGaA (Darmstadt, Germany) for determining the concentrations of Kyn via LC-MS.
References

45. Lopez MV, Adris SK, Bravo AI, Chernajovsky Y, Podhajcer OL. IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis. Journal of immunology (Baltimore, Md : 1950) 2005;175(9):5885-94.

Figure Legends

Figure 1.
NHS-muIL12 and avelumab combination treatment had a synergistic antitumor effect and induced long-term protective immunity in EMT-6 tumor-bearing mice. (A-C) EMT-6 tumor-bearing BALB/c mice \((n = 8 \text{ mice/group}) \) were treated with: 1) isotype control (200 µg), 2) NHS-muIL12 (2 µg), 3) NHS-muIL12 (10 µg), 4) avelumab (200 µg), 5) NHS-muIL12 (2 µg) + avelumab (200 µg), or 6) NHS-muIL12 (10 µg) + avelumab (200 µg). NHS-muIL12 was injected as a single s.c. dose on day 0, and avelumab or isotype control were administered i.v. on days 0, 3, 6. (A) Average tumor volumes, measured twice weekly. Error bars represent SEM. (B) Individual tumor volumes, where each line represents a single mouse. P-values were calculated by 2-way ANOVA followed by Bonferroni’s posttest. (C) Kaplan-Meier survival curve and proportion of tumor clearance in each treatment group. (D) Mice in complete remission for 3 months following last combination treatment (mice from two repeat studies) and naïve BALB/c mice were challenged with EMT-6 \((n = 20 \text{ and } n = 8, \text{ respectively}) \) or 4T1 \((n = 5 \text{ and } n = 8, \text{ respectively}) \) cells by orthotopic injection on the opposite mammary pad of the original tumor site. Average tumor volume after implantation. Error bars represent SEM. n.s., not significant.

Figure 2.
NHS-muIL12 and avelumab combination treatment enhanced anti-tumor efficacy in MC38 tumor-bearing mice. (A-C) MC38 tumor-bearing μMt- mice \((n = 8 \text{ mice/group}) \) were treated with: 1) isotype control (400 µg), 2) NHS-muIL12 (2 µg), 3) NHS-muIL12 (10 µg), 4) avelumab (400 µg), 5) NHS-muIL12 (2 µg) + avelumab (400 µg), or 6) NHS-muIL12 (10 µg) + avelumab (400 µg). NHS-muIL12 was administered s.c. on day 0, and avelumab and isotype control were administered i.v. on days 0, 4, 7, 11, 14, 18, and 21. (A) Average tumor volumes, measured twice weekly. Error bars represent SEM. (B) Individual tumor volumes; each line represents an individual mouse. P-values were calculated by 2-way ANOVA followed by Bonferroni’s posttest. (C) Kaplan-Meier survival curve. Median survival times (days) are shown.
Figure 3.
Combination therapy with NHS-muIL12 and avelumab changed immune phenotypes. (A-D) EMT-6 tumor-bearing BALB/c mice were treated ($n = 4$ mice/group) with one of the following: 1) isotype control (200 µg), 2) NHS-muIL12 (2 µg for A and B; 0.5 µg for C and D), 3) NHS-muIL12 (10 µg), 4) avelumab (200 µg), 5) NHS-muIL12 (2 µg for A and B; 0.5 µg for C and D) + avelumab (200 µg), or 6) NHS-muIL12 (10 µg) + avelumab (200 µg). FACS analysis of dissociated (A-C) spleens and (D) tumors harvested on day 5 after treatment initiation; percentages of gated cells are shown. (A) Percentage of proliferating (Ki-67$^+$) splenic NK cells (CD49$^+$/DX5$^+$) and CD8$^+$ T cells (CD8$^+$/CD45$^+$). (B) Percentage splenic central memory CD8$^+$ T cells (T$_{CM}$; CD44high/CD62high) and effector memory CD8$^+$ T cells (T$_{EM}$; CD44high/CD62low). (C) Percentage T-bet$^+$ splenic NK cells and T-bet$^+$ CD8$^+$ T cells. (D) Percentage MHC IIhigh or MHC IIlow of tumor-associated macrophages (TAMs; CD45b$^+$/CD11b$^+$/Ly6C$^+$). P-values were calculated using one-way ANOVA followed by Bonferroni’s posttest. n.s., not significant.

Figure 4.
NHS-muIL12 treatment enhanced CD8$^+$ T cell infiltration in EMT-6 tumors. (A-B) EMT-6 tumor-bearing mice were treated on day 0 ($n = 4$ mice/group) with: 1) isotype control (200 µg), 2) NHS-muIL12 (2 µg), 3) NHS-muIL12 (10 µg), 4) avelumab (200 µg), 5) NHS-muIL12 (2 µg) + avelumab (200 µg), or 6) NHS-muIL12 (10 µg) + avelumab (200 µg). Tumors were harvested on day 5, formalin fixed, and sectioned (5 µm) for anti-mouse CD8 antibody staining. (A) Representative images of anti-CD8 immunohistochemistry. Scale bars, 100 µm. (B) Quantification of the average percentage of CD8$^+$ cells relative to total cells in tumors for each treatment group. Error bars represent SEM.
Figure 5.

NHS-muIL12 and avelumab combination treatment elevated gene expression in tumor tissue and cytokine levels in the plasma of the EMT-6 model. (A) Heatmap of differentially expressed genes from a Nanostring gene expression panel of mRNA from EMT-6 tumors (n = 4 mice/treatment) treated with one of the following: G1) isotype control (200 μg), G2) NHS-muIL12 (2 μg), G3) NHS-muIL12 (10 μg), G4) avelumab (200 μg), G5) NHS-muIL12 (2 μg) + avelumab (200 μg), or G6) NHS-muIL12 (10 μg) + avelumab (200 μg). The colors in each box in the heat map represent the log2 fold-change in the median expression of a gene after treatment relative to isotype control. Each column represents a single gene. Genes were included in the heatmap if differential expression (defined as p-value <0.05 and log-fold change >1) was identified in any of the following comparisons: G6 vs. G1, G5 vs. G3, G6 vs. G3, or G3 vs. G1. Green boxes (bottom) show significant effects of NHS-muIL12 and avelumab in a linear model that accounts for both across all treatment groups. (B) Plasma concentrations of cytokines measured by Mouse Multiplex Cytokine Assay. EMT-6 tumor-bearing BALB/c mice were treated (n = 5 mice/group) on day 0 with single doses of 1) isotype control (200 μg), 2) NHS-muIL12 (0.5 μg) + isotype control (200 μg), 3) NHS-muIL12 (5 μg) + isotype control (200 μg), 4) avelumab (200 μg), 5) NHS-muIL12 (0.5 μg) + avelumab (200 μg), or 6) NHS-muIL12 (5 μg) + avelumab (200 μg). Blood samples were collected on day 2 and plasma concentrations of cytokines were measured. Error bars indicate SEM. P-values were calculated using one-way ANOVA followed by Bonferroni’s posttest. n.s., not significant.

Figure 6.

NHS-muIL12 and avelumab combination treatment increased IFN-γ but not Kynurenine levels or the percentage of Treg cells relative to NHS-muIL12. (A-C) EMT-6 tumor-bearing (~200-300 mm³) mice were randomized (n = 4 mice/group) to one of the following treatments: 1) isotype control (200 μg), 2) NHS-muIL12 (0.5 μg) + isotype control (200 μg), 3) NHS-muIL12 (10 μg) + isotype control (200 μg), 4) avelumab (200 μg), 5) NHS-muIL12 (0.5 μg) + avelumab (200 μg), or 6) NHS-muIL12 (10 μg) + avelumab control (200 μg). Isotype control and avelumab were injected i.v. on days 0 and 3, and NHS-muIL12 was injected s.c. on day 0. Blood samples and spleens were collected on day 5 and 10 after treatment initiation. (A) IFN-γ concentration in...
plasma, as determined by ELISA. (B) Kynurenine concentration in plasma, as determined by high performance liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). (C) Flow cytometry of splenic Treg cells (CD25+, FoxP3+, CD4+) as a percentage of CD4+ splenocytes. Error bars indicate SEM. P-values were calculated using one-way ANOVA followed by Bonferroni’s posttest. n.s., not significant.
Figure 1

A Average Tumor Volume

<table>
<thead>
<tr>
<th>Condition</th>
<th>Days Post Treatment Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotype Control (200 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>NHS-muIL12 (2 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>NHS-muIL12 (10 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>Avelumab (200 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>Avelumab (200 μg) + NHS-muIL12 (2 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>Avelumab (200 μg) + NHS-muIL12 (10 μg)</td>
<td>0 5 10 15 20</td>
</tr>
</tbody>
</table>

B Individual Tumor Volume

<table>
<thead>
<tr>
<th>Condition</th>
<th>Days Post Treatment Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotype Control (200 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>NHS-muIL12 (2 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>NHS-muIL12 (10 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>Avelumab (200 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>Avelumab (200 μg) + NHS-muIL12 (2 μg)</td>
<td>0 5 10 15 20</td>
</tr>
<tr>
<td>Avelumab (200 μg) + NHS-muIL12 (10 μg)</td>
<td>0 5 10 15 20</td>
</tr>
</tbody>
</table>

C Survival

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tumor Cleared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotype Control (200 μg)</td>
<td>0/8</td>
</tr>
<tr>
<td>NHS-muIL12 (2 μg)</td>
<td>0/8</td>
</tr>
<tr>
<td>NHS-muIL12 (10 μg)</td>
<td>2/8</td>
</tr>
<tr>
<td>Avelumab (200 μg)</td>
<td>1/8</td>
</tr>
<tr>
<td>Avelumab (200 μg) + NHS-muIL12 (2 μg)</td>
<td>7/8</td>
</tr>
<tr>
<td>Avelumab (200 μg) + NHS-muIL12 (10 μg)</td>
<td>7/8</td>
</tr>
</tbody>
</table>

D Tumor Rechallenge

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tumor Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMT-6 Tumor</td>
<td></td>
</tr>
<tr>
<td>Naive mice</td>
<td></td>
</tr>
<tr>
<td>Combination-cured mice</td>
<td></td>
</tr>
<tr>
<td>4T1 Tumor</td>
<td></td>
</tr>
<tr>
<td>Naive mice</td>
<td></td>
</tr>
<tr>
<td>Combination-cured mice</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Graphs showing changes in tumor volume and survival rates for different treatment conditions.

Author Manuscript Published OnlineFirst on July 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0483
Figure 3

A Proliferation of CD8\(^+\) T Cells and NK Cells

B Memory CD8\(^+\) T Cells

C T-bet Expression in CD8\(^+\) T Cells and NK Cells

D Tumor-Associated Macrophages

1. Isotype Control (200 µg)
2. NHS-muIL12 (0.5 or 2 µg)
3. NHS-muIL12 (10 µg)
4. Avelumab (200 µg)
5. NHS-muIL12 (0.5 or 2 µg) + Avelumab (200 µg)
6. NHS-muIL12 (10 µg) + Avelumab (200 µg)
Figure 4

Isotype Control (200 µg) NHS-muIL12 (2 µg) NHS-muIL12 (10 µg)

Avelumab (200 µg)

NHS-muIL12 (2 µg) + Avelumab (200 µg) NHS-muIL12 (10 µg) + Avelumab (200 µg)

CD8+ T Cell Quantification

%CD8+ of Total Cells
0 10 20 30 40 50

Isotype Control (200 µg)
NHS-muIL12 (2 µg)
NHS-muIL12 (10 µg)
Avelumab (200 µg)
NHS-muIL12 (2 µg) + Avelumab (200 µg)
NHS-muIL12 (10 µg) + Avelumab (200 µg)
A

NanoString Gene Expression Analysis

B

Cytokine Proteomics Analysis

Figure 5
Figure 6

A
IFN-γ

Day 5

Day 10

1 2 3 4 5 6 1 2 3 4 5 6

B
Kynurenine

C
Tregs

1 2 3 4 5 6 1 2 3 4 5 6

1. Isotype Control (200 µg)
2. NHS-muIL12 (0.5 µg)
3. NHS-muIL12 (10 µg)
4. Avelumab (200 µg)
5. NHS-muIL12 (0.5 µg) + Avelumab (200 µg)
6. NHS-muIL12 (10 µg) + Avelumab (200 µg)
Combination therapy with NHS-muIL12 and avelumab (anti-PD-L1) enhances antitumor efficacy in preclinical cancer models

Chunxiao Xu, Yanping Zhang, P. Alexander Rolfe, et al.

Clin Cancer Res Published OnlineFirst July 5, 2017.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-17-0483

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2017/07/04/1078-0432.CCR-17-0483.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.