Characterization of the Immune Microenvironment in Hepatocellular Carcinoma (HCC)

Mark Yarchoan1*, Dongmei Xing1*, Lan Luan2, Haiying Xu1, Rajni B Sharma1, Aleksandra Popovic1, Timothy M. Pawlik3, Amy K. Kim1, Qingfeng Zhu1, Elizabeth M. Jaffee1, Janis M. Taube1, Robert A. Anders1

* These authors contributed equally to this work

1 The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA

2 Department of Pathology, Central Hospital affiliated with Shenyang Medical College, Shenyang, Liaoning Province, China

3 Ohio State University Wexner Medical Center, Columbus, Ohio, USA

Running title: Immune Microenvironment in HCC

Key words: LAG-3, PD-L1, PD-1, Hepatocellular, Immunotherapy

Correspondence to: Dr. Robert A. Anders, Johns Hopkins Medical Institutions, Department of Pathology, CRB II 346, 1550 Orleans Street, Baltimore, MD 21231, rander54@jhmi.edu

Financial support: This work was partially supported by a National Institutes of Health grant (T32 CA009071, to M.Y.)

Disclosure of Potential Conflicts of Interest: The authors declare no potential conflicts of interest.
Statement of translational relevance

Tumors frequently co-opt the expression of multiple inhibitory immune signals (immune checkpoints) to reduce anti-tumor immunity. Immune checkpoint inhibitors are designed to block these inhibitory leading to increased activity of T cells specific for tumor antigens. Immune checkpoint inhibitors targeting programmed death 1 (PD-1) have clinical activity in many tumor types including hepatocellular carcinoma (HCC). We have characterized the immune microenvironment in HCC and find that lymphocyte activation gene-3 (LAG-3) is increased in HCC tumors relative to liver background. Multiple LAG-3 inhibitors are in early stages of clinical development and our results provide a basis for investigating combinatorial checkpoint blockade with a LAG-3 and PD-1 inhibitor in HCC.
Abstract

Purpose: Hepatocellular carcinoma (HCC) often arises in the setting of chronic liver inflammation and may be responsive to novel immunotherapies.

Experimental Design: To characterize the immune microenvironment in HCC, immunohistochemical (IHC) staining was performed for CD8 positive T lymphocytes, PD-1 positive and LAG-3 positive lymphocytes, CD163 positive macrophages, and PD-L1 expression in tumor and liver background from 29 cases of resected HCC.

Results: Expression of CD8 was reduced in tumor and expression of CD163 was reduced at the tumor interface. Positive clusters of PD-L1 expression were identified in 24/29 cases (83%) and positive expression of LAG-3 on tumor infiltrating lymphocytes was identified in 19/29 cases (65%). The expression of both PD-L1 and LAG-3 was increased in tumor relative to liver background. No association between viral status or other clinicopathologic features and expression of any of the IHC markers investigated was noted.

Conclusions: LAG-3 and PD-L1, two inhibitory molecules implicated in CD8 T-cell tolerance, are increased in most HCC tumors, providing a basis for investigating combinatorial checkpoint blockade with a LAG-3 and PD-L1 inhibitor in HCC.

Introduction

Hepatocellular carcinoma (HCC) is an aggressive malignancy that typically develops in the setting of chronic liver disease or cirrhosis. HCC is the second leading cause of cancer-related death in the world (1). The leading risk factor for HCC is cirrhosis arising from viral hepatitis, alcoholic liver disease, and nonalcoholic fatty liver disease (for review, (2)). Early stage HCC can often be treated with potentially curative partial resection or liver transplantation or with loco-regional procedures. However, for patients with advanced disease, current systemic treatment options provide only limited therapeutic benefit for a subset of patients and novel therapeutic options are needed.

Immune checkpoint inhibitors targeting programmed death 1 (PD-1) or its ligand, PD-L1, have demonstrated remarkable clinical activity across a number of different tumor types. In HCC, preliminary signs of activity were observed in the initial clinical trials of these agents and multiple larger studies are ongoing (3–5). Initial signs of clinical activity have also been observed with therapies targeting another checkpoint pathway, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), in HCC (6). Responses with these immunotherapy agents have been observed in viral infected and uninfected patients (3). Although larger confirmatory studies are required, these preliminary clinical findings suggest that the immune checkpoint inhibitors may be important in the future management of HCC.

Recent studies have begun to define the immune microenvironment in HCC. PD-L1 expression is increased in some HCC tumors and PD-L1 expression in this tumor type has been correlated with aggressive disease and poorer survival in recent series (7–10). Additionally, increased plasma concentration of the soluble form of CD163 (sCD163), a marker of alternatively activated macrophages (M2), has been observed in HCC and may be associated with poor survival (11,12) indicating that M2 macrophages may be a potential target for HCC immunotherapy. However, the clinical significance of this association has been disputed in another series because sCD163 may be reflective of active hepatitis rather than meaningful tumor characteristics (13).
Less is known about other checkpoint signals within HCC tumors. However, a number of other inhibitory signals are often co-expressed with PD-1 on effector T cells that downregulate their activity in tumors. For example, the lymphocyte activation gene-3 (LAG-3) is commonly expressed on the surface of T cells and is thought to regulate and inhibit T cell activation. As with other immune checkpoints, LAG-3 has been implicated in tumor escape and has recently emerged as a potential target for immune modulation in cancer therapy (14). However, to our knowledge, the expression of LAG-3 has not previously been assessed in HCC. Here, we characterize the expression of CD8, CD163, PD-1, PD-L1, and LAG-3 in HCC. Our findings provide new insights into the immune modulatory signals within the HCC tumor micro-environment that regulate effector T cell responses.

Materials and Methods

Hepatocellular carcinoma specimens and immunohistochemistry (IHC) staining

This research was performed in accordance with the Declaration of Helsinki and the study protocol was approved by the Institutional Review Board (IRB) at Johns Hopkins. A total of 29 cases of untreated, primary HCC resected at Johns Hopkins Hospital from 2011-2014 were identified. Clinical information pertaining to these cases was extracted from the Johns Hopkins Hospital electronic medical record. The diagnosis was confirmed by two pathologists (RAA and DX) and through review of H&E slides of each case.

Staining for PD-L1 (15) and PD-1 (16) was performed as previously described. IHC staining for LAG3, CD8, and CD163 were performed according to standardized institutional protocols. Briefly, one representative formalin-fixed paraffin-embedded (FFPE) block from each tumor specimen was selected with tumor and background liver tissue on the same block. Consecutive 5 µm-thick sections were cut from each block and mounted on glass slides. After deparaffinization and rehydration, antigen retrieval, antibody staining, and detection was performed as shown in Table 1. All slides were counterstained with hematoxylin, dehydrated and cover slipped.

Quantitation of CD8, PD-1 and CD163

Slides were scanned at 20x objective equivalent (0.49 microns/pixel) using an Aperio Scanscope. A trained gastrointestinal pathologist determined the tumor/background liver interface. The prevalence of positive stained cells for each marker was recorded in tumor, interface tumor side, interface background liver side, and background liver compartments. Image analysis (HALO Indica Labs) was used to determine the density (# of cells / surface area analyzed) of CD8 and PD-1-expressing lymphocytes and CD163-expressing cells within each of the four tissue compartments as previously described (17,18).

Quantification of PD-L1 and LAG-3

Scoring of PD-L1 expression on tumor and LAG-3 expression on infiltrating lymphocytes was performed manually by two separate pathologists (RAA and DX), working independently, who were blinded to the demographic features of the case while performing the scoring. The scoring of the two pathologists was subsequently averaged into a combined final score. For PD-L1 expression, the number of cell clusters (defined as more than 5 adjacent cells staining with PD-L1 in a cell surface/membranous pattern) was counted in tumor and background liver. Clusters of hepatocytes or infiltrating immune cells expressing PD-L1 were both included in this count. The density of PD-L1 expression was subsequently determined by dividing the number of cell clusters by the surface area analyzed to obtain a final cluster density score. The percentage of LAG-3- positive lymphocytes was determined by dividing the number of LAG-3-
positive lymphocytes by the total number of lymphocytes counted across 5 low power fields in tumor and liver background sections.

Statistical analysis

The mean expression of CD8, CD163, PD-1, PD-L1 and LAG-3 in the various tissue compartments (background liver, interface background liver, interface tumor side, and tumor) was compared using Wilcoxon signed rank tests. The relationship between patient or tumor characteristics and the expression of these IHC markers in tumor was explored using Wilcoxon rank-sum tests and correlations with appropriate transformations. Statistical analyses were performed with GraphPad Prism 7 (GraphPad Software, Inc. La Jolla, CA) and confirmed in JMP 11 (SAS Institute Inc., Cary, NC). All statistical tests were two-sided, and p-values of less than 0.05 were considered to be statistically significant for all analyses.

Results

It is now clear that tumors attract many different immune subsets into their micro-environment that can have both immune suppressive and effector functions. Whether this immune infiltration results in immune suppression or tumor rejection is determined both by the summation of the functional capabilities of each subset and the location of these subsets relative to tumor cells. Some untreated tumors will have dense immune infiltration in the normal or reactive tissue surrounding the tumor but few immune cells infiltrating the tumor. These infiltrate characteristics can determine which immune modulating agents may be effective in altering this inflammatory response to one that can infiltrate and eradicate tumor. We recently developed an immunohistochemistry approach that analyzes immune targets on serially cut slides and uses both an image analysis approach and a manual approach to quantitate the density of each target on different immune cell subtypes in different areas of the tumor micro-environment. This approach was applied for the first time to 29 cases of untreated HCC.

The characteristics of the study group are displayed in Table 2. The median age of subjects at the time of the resection was 62 and the majority of subjects (83%) had background cirrhosis. Among the patients included in this cohort, fourteen patients had undergone a liver transplantation and fifteen patients had undergone a curative-intent surgical resection of HCC. At the time of analysis, five patients had relapsed disease, four subjects had died, and two subjects were lost to follow-up.

Figure 1 demonstrates examples of IHC staining for PD-L1 and CD163. The mean density of CD8-positive infiltrating T lymphocytes in background liver, tumor interface, and tumor is shown in Figure 2. The mean density of CD8 positive T lymphocytes was significantly lower in tumor than in the background liver (14.3 cells/mm² vs. 43.0 cells/mm², p< 0.001). At the tumor interface, the mean density of CD8 positive lymphocytes was higher on the non-tumor (or “liver”) side than the tumor side of the interface (46.5 cells/mm² vs. 29.3 cells/mm², p<0.01) and the density of lymphocytes was similar on the non-tumor side of the interface compared to the background liver.

A similar density of CD163 positive macrophages cells was observed in the background liver and tumor sections. However, a lower density of CD163 positive cells was observed at the tumor interface. The mean density of CD163 positive cells was 73.5 cells/mm² on the interface liver (or non-tumor) side and 71.2 cells/mm² on the interface tumor side, which was significantly lower than the background liver (93.4 cells/mm²) (p<0.01 and p<0.05, respectively). The density of PD-1 positive cell staining was similar in the background liver and tumor interface subsections. However, the mean density of PD-1 positive cells was significantly lower in the tumor than in the background liver (4.4 cells/mm² vs. 9.8 cells/mm², p<0.01).
The mean expression of PD-L1 positive clusters was higher in tumor than liver background (9.8 vs. 4.4 clusters per mm², p<0.001). Of the 29 samples analyzed, 24 tumors (83%) had positive PD-L1 expression using a cutoff of greater than one positive cluster per mm². By this same criterion, two of 29 (7%) of liver background samples had positive PD-L1 expression. One was a patient with a history of HBV cirrhosis and one was a patient with a history of NASH without discernible cirrhosis.

Elevated LAG-3 expression was observed on tumor infiltrating lymphocytes from multiple patients. Across all samples analyzed, the mean percentage of tumor infiltrating lymphocytes staining positive for LAG-3 was 13%, which was significantly higher than the 3% of lymphocytes that stained for this marker in the liver background (p<0.001). Using a positive cutoff value of 1%, 19/29 of samples (65%) had positive LAG-3 staining of lymphocytes in tumor whereas 10/29 of samples (34%) had positive LAG-3 staining of lymphocytes in liver background. Using a more restrictive cutoff value of 5%, 15/29 of samples (52%) had positive LAG-3 staining of lymphocytes in tumor whereas 4/29 of samples (14%) had positive LAG-3 staining of lymphocytes in liver background.

Many patients with positive LAG-3 staining in tumor infiltrating lymphocytes also had positive PD-L1 staining in tumor, but there were also several cases with elevated LAG-3 staining in tumor infiltrating lymphocytes that did not have detectable PD-L1 staining. Across the entire study cohort using a cutoff value of 1%, 17 patients (58%) had both positive LAG-3 and PD-L1 staining in tumor, whereas six patients (21%) had positive PD-L1 staining only, and two patients (7%) had positive LAG-3 staining only. Four patients (14%) had negative PD-L1 and LAG-3 staining. There was no relationship between LAG-3 staining in tumor infiltrating lymphocytes and the density of PD-1 or CD8 expression in tumor.

As indicated in Table 2, 15/29 (52%) of patients from these derived pathology cases were virally infected with HCV or HBV, whereas the remaining cases were uninfected. We investigated the relationship between the presence of viral hepatitis and the density of staining of the various IHC markers in tumor tissue. The mean density of CD8, CD163, and PD-1 positive cells was similar in viral infected and infected patients (p>0.05 for all comparisons). Similarly, a significant difference in the expression of LAG-3 or PD-L1 in virally infected and uninfected patients was not identified (see Figure 3). Additionally, there was no association among presence of underlying cirrhosis, pathologic stage, high tumor grade, vascular invasion, or AFP level prior to surgery and the density of CD8, CD163, PD-1, PD-L1 and LAG-3 expression in tumor (p>0.05 for all comparison). The relationship between tumor pathologic stage and expression of LAG-3 and PD-L1 is displayed in Figure 4.

Discussion

In this study, we describe the density of CD8, CD163, PD-1, PD-L1, and LAG-3 expression in HCC. Consistent with prior reports, we demonstrate that PD-L1 expression is increased on HCC cells relative to liver background. We also demonstrate that there is a relative decrease in the density of CD8 positive lymphocytes and PD-1 positive cells infiltrating HCC cells and a relative decrease in the density of CD163 positive cells within the tumor interface, relative to the liver background. Furthermore, we demonstrated for the first time that LAG-3 expression is increased in tumor infiltrating lymphocytes relative to liver background in patients with HCC. This is also the first study to compare the tumor microenvironment of HCCs derived from a virally infected group versus uninfected group.

This work has several potential implications. First, the confirmation of elevated PD-L1 expression in HCC tumors supports the continued development of immune checkpoint inhibitors targeting the PD-1/PD-L1 pathway in HCC. Second, the reported expression levels of CD8 and PD-L1 in HCC may serve as a benchmark to evaluate novel therapies that seek to prime tumors for immune checkpoint inhibitory
therapy by inducing tumor infiltrating lymphocytes and augmenting PD-L1 expression in HCC. Third, our results newly identify LAG-3 as a potential target for cancer immunotherapy in HCC.

LAG-3 is an immune checkpoint molecule that negatively regulates T cell function (14). The expression of LAG-3 in some HCCs indicate a likely role for LAG-3 in the suppression of antitumor immunity in HCC and provide a basis for investigating combinatorial checkpoint blockade with a LAG-3 and PD-L1 inhibitor in HCC. LAG-3 inhibition has been proposed to work synergistically with PD-1 inhibition to increase anti-tumor immunity, and several monoclonal antibodies that inhibit LAG-3 are now in early human clinical trials (19,20). The majority of HCC cases with positive PD-L1 staining examined in this study also had increased LAG-3 expression in tumor infiltrating lymphocytes, suggesting that the LAG-3 immune checkpoint may limit the efficacy of single-agent PD-1 checkpoint blockade in HCC. Furthermore, we identified multiple cases in which there was a discordance between PD-L1 and LAG-3 staining, in which only one of the two immune checkpoints was upregulated. Although it is unknown whether PD-L1 or LAG-3 expression is a predictive biomarker of response to checkpoint inhibitors targeting these pathways in HCC, it is possible that some HCC patients may benefit from LAG-3 inhibition rather than PD-1 pathway inhibition.

We did not identify any relationship between patient features, tumor histology or stage, or viral status, and expression of any IHC marker in the tumor microenvironment. This could explain the similar response rates observed in clinical trials of immune checkpoint inhibitors between virally infected and uninfected individuals (3–5). However, larger sample sizes are needed to determine more conclusively that expression of these tumor markers is independent of viral status and other clinicopathologic features. Notable strengths of this study include the use of clinicopathologically diverse cases and the use of semi-quantitative image analyses or manual scoring of IHC by two pathologists. Relative weaknesses include the modest size of the study cohort. Although the clinical features of the cases were withheld from the pathologists while they performing the manual IHC scoring, the pathologists may have been able to ascertain clinical phenotypes from the pathologic features of the cases. Additionally, because this study was exploratory in nature, we did not correct our statistical analysis for the use of multiple comparisons.

In conclusion, we have characterized the immune microenvironment in HCC and identified LAG-3 as a potential target for HCC immunotherapy.
References

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Clone</th>
<th>Source</th>
<th>Antigen Retrieval</th>
<th>Primary Ab incubation</th>
<th>Instrument/Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8</td>
<td>C8/144B</td>
<td>Cell Marque</td>
<td>EDTA buffer, pH9.0</td>
<td>40</td>
<td>Biotin-conjugated 2nd antibody, visualized with a DAB chromogen (Ventana Ultra)</td>
</tr>
<tr>
<td>CD163</td>
<td>10D6</td>
<td>Leica</td>
<td>Citrate buffer, pH6.0</td>
<td>30</td>
<td>HRP-conjugated polymer, visualized with a DAB chromogen (Leica-Bond III)</td>
</tr>
<tr>
<td>PD-1</td>
<td>NAT105</td>
<td>Abcam</td>
<td>Citrate buffer, pH 6.0</td>
<td>Overnight, 4C</td>
<td>Tyramide Signal Amplification (TSA) system (PerkinElmer)</td>
</tr>
<tr>
<td>PD-L1</td>
<td>SP142</td>
<td>Spring Bioscience</td>
<td>Citrate buffer, pH 6.0</td>
<td>Overnight, 4C</td>
<td>Tyramide Signal Amplification (TSA) system (PerkinElmer)</td>
</tr>
<tr>
<td>LAG-3</td>
<td>17B4</td>
<td>Lifespan Bioscience</td>
<td>Citrate buffer, pH 6.0</td>
<td>Overnight, 4C</td>
<td>Biotin-conjugated 2nd antibody (BD Pharmingen 553441), amplified by TSA Plus Biotin Kit (Perkin Elmer NEL749B001KT), detected with a peroxidase-conjugated streptavidin (Dako P0397) visualized by DAB (Sigma D4293)</td>
</tr>
</tbody>
</table>

Table 1) IHC staining procedures for CD8, CD163, PD-1, PD-L1, and LAG-3.
<table>
<thead>
<tr>
<th>Age, years</th>
<th>Median</th>
<th>62</th>
<th>Range</th>
<th>17-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, number (%)</td>
<td>Male</td>
<td>22 (76%)</td>
<td>Female</td>
<td>7 (24%)</td>
</tr>
<tr>
<td>Pathology</td>
<td>Poorly diff</td>
<td>2 (7%)</td>
<td>Moderately diff</td>
<td>20 (69%)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>Yes</td>
<td>24 (83%)</td>
<td>No</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Disease stage (T, N)</td>
<td>T1, N0</td>
<td>5 (17%)</td>
<td>T1, NX</td>
<td>10 (34%)</td>
</tr>
<tr>
<td>AFP</td>
<td>Median</td>
<td>15.5</td>
<td>Range</td>
<td>1.8-836</td>
</tr>
<tr>
<td>Vascular invasion</td>
<td>Present</td>
<td>8 (28%)</td>
<td>Absent</td>
<td>20 (69%)</td>
</tr>
<tr>
<td>HCC Group</td>
<td>Viral infected</td>
<td>15 (52%)</td>
<td>HCV</td>
<td>14 (48%)</td>
</tr>
</tbody>
</table>

Table 2) Characteristics of the study subjects.
Figure 1) A: H&E staining of the tumor (*), interface tumor side (i*), interface background side (i#), with background cirrhotic liver (#) (magnification: 10×). B: Higher power view of the PD-L1 stain in tumor showing positive cell clusters (magnification: 40×). C: Higher power view of the PD-L1 stain in background liver showing canalicular staining pattern (magnification: 40×). D: Higher power view of the CD163 in tumor showing showing clusters of tumor infiltrating macrophages (magnification: 40×). E: Higher power view of the CD163 in background liver showing a sinusoidal staining pattern (magnification: 40×). F: Higher power view of LAG3 staining on tumor infiltrating lymphocytes (magnification: 20×). G: CD8 staining of tumor revealing a cluster of lymphocytes (magnification: 20×). H: LAG3 staining of the same microscopic field as in G. I: PD-1 staining of the same microscopic field as in G. J: PD-L1 staining in tumor showing positive cell clusters (magnification 20×). K: CD163 stain of the same microscopic field as in J, showing clusters of staining that colocalize with areas of high PD-L1 staining.

Figure 2) Density of CD8, CD163, and PD-1 positive cells (cells/mm²) in liver background as compared to tumor interface background side, tumor interface tumor side, and tumor (A-C). Density of PD-L1 positive clusters per mm² and percentage of tumor infiltrating lymphocytes staining positive for LAG-3 in liver background and tumor (D, E). Density (y axis) in each figure is described per mm² of tissue analyzed. Error bars indicate mean and standard deviation; for each comparison to liver background, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 3) Density of PD-L1 positive clusters (left) and percentage of tumor infiltrating lymphocytes staining positive for LAG-3 (right) were similar in tumor from viral uninfected and infected patients.

Figure 4) Density of PD-L1 positive clusters (left) and percentage of tumor infiltrating lymphocytes staining positive for LAG-3 (right) were not associated with pathologic tumor stage.
Figure 2

A) Density of CD8+ cells
B) Density of CD163+ cells
C) Density of PD-1+ cells
D) Density of PD-L1+ clusters
E) Density of LAG-3+ lymphocytes
Characterization of the Immune Microenvironment in Hepatocellular Carcinoma (HCC)

Mark Yarchoan, Dongmei Xing, lan luan, et al.

Clin Cancer Res Published OnlineFirst September 19, 2017.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-17-0950

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.