SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure S1. Characterization of W2671T and W2830T murine ovarian carcinoma cell lines.
Phase contrast photomicrographs showing epithelial-like cobblestone morphology of mouse ovarian carcinoma-derived cell lines A) W2671T and B) W2830T. W2671T cells are C) cytokeratin 8-positive by immunofluorescence staining and D) negative for vimentin. Inset shows vimentin-positive murine embryo fibroblast (MEF) cells used as a positive control.

Supplemental Figure S2. Characterization of PI3K/Akt/mTOR and Erk signaling pathway regulation in human ovarian cancer cells after treatment with mTOR inhibitor rapamycin.
Immunoblots showing dose-dependent effect of rapamycin (0.01 - 100nM) on phosphorylation of Akt, Erk, S6K1, S6, 4E-BP1, and GSK3β after exposure to rapamycin for 2 hours in A) TOV112D and B) A2780 cells transduced with mutant β-catenin (A2780-S33Y) or vector alone (A2780-Neo). Effects of rapamycin on the transcriptionally active (dephosphorylated on Ser37 or Thr41) form of β-catenin is also shown.

Supplemental Figure S3. Inhibition of S6 phosphorylation in APC+/PTEN+ murine ovarian tumors by rapamycin in vivo
Immunoblot of lysates from primary tumor tissues from mice treated for 4 weeks with vehicle (V1, 2, 3), 1 mg/kg (R1) or 4 mg/kg (R4) rapamycin. Levels of phosphorylated and total Akt and S6, and β-actin are shown. Lower panels show IHC staining of primary tumor tissues for pS6 in vehicle (left) and rapamycin (right) treated murine ovarian tumors.