Abstract
Purpose: Pancreatic cancer is the fourth leading cause of cancer deaths and there currently is no reliable modality for the early detection of this disease. Here we identify cancer-specific promoter DNA methylation of BNC1 and ADAMTS1 as a promising biomarker detection strategy meriting investigation in pancreatic cancer. Experimental Design: We used a genome-wide pharmacologic transcriptome approach to identify novel cancer-specific DNA methylation alterations in pancreatic cancer cell lines. Of 8 promising genes, we focused our studies on BNC1 and ADAMTS1 for further downstream analysis including methylation and expression. We used a nanoparticle-enabled MOB (Methylation On Beads) technology to detect early stage pancreatic cancers by analyzing DNA methylation in patient serum. Results: We identified 2 novel genes, BNC1 (92%) and ADAMTS1, (68%) that showed a high frequency of methylation in pancreas cancers (n=143), up to 100% in PanIN-3 and 97% in Stage I invasive cancers. Using the nanoparticle-enabled MOB technology, these alterations could be detected in serum samples (n=42) from pancreas cancer patients, with a sensitivity for BNC1 of 79% (95%CI:66-91%) and for ADAMTS1 of 48% (95%CI:33-63%), while specificity was 89% for BNC1 (95%CI:76-100%) and 92% for ADAMTS1 (95%CI:82-100%). Overall sensitivity using both markers is 81% (95%CI:69-93%) and specificity is 85% (95%CI:71-99%). Conclusions: Promoter DNA methylation of BNC1 and ADAMTS1 are potential biomarkers to detect early stage pancreatic cancers. Assaying the promoter methylation status of these genes in circulating DNA from serum is a promising strategy for early-detection of pancreatic cancer and has the potential to improve mortality from this disease.
- Received October 15, 2012.
- Revision received August 12, 2013.
- Accepted September 15, 2013.
- Copyright © 2013, American Association for Cancer Research.