Abstract
Purpose: While extent of tumor resection is an important predictor of outcome in glioma, margin delineation remains challenging due to lack of inherent contrast between tumor and normal parenchyma. Fluorescence-guided surgery is promising for its ability to enhance contrast through exogenous fluorophores; however, the specificity and sensitivity of the underlying contrast mechanism and tumor delivery and uptake vary widely across approved and emerging agents.
Experimental Design: Rats with orthotopic F98 wild-type and F98 EGFR-positive (EGFR+) gliomas received in vivo administration of IRDye680RD, 5-aminioleuvulinic acid, and ABY-029—markers of perfusion, protoporphyrin metabolism, and EGFR expression, respectively. Ex vivo imaging demonstrates the contrast mechanism–dependent spatial heterogeneity and enables within-animal comparisons of tumor-to-background ratio (TBR).
Results: Generally, ABY-029 outperformed PpIX in F98EGFR orthotopic tumor margins and core (50% and 60% higher TBR, respectively). PpIX outperformed ABY-029 in F98wt margins by 60% but provided equivalent contrast in the bulk tumor. IRDye680RD provided little contrast, having an average TBR of 1.7 ± 0.2. The unique spatial patterns of each agent were combined into a single metric, the multimechanistic fluorescence-contrast index (MFCI). ABY-029 performed best in EGFR+ tumors (91% accuracy), while PpIX performed best in wild-type tumors (87% accuracy). Across all groups, ABY-029 and PpIX performed similarly (80% and 84%, respectively) but MFCI was 91% accurate, supporting multiagent imaging when tumor genotype was unknown.
Conclusions: Human use of ABY-029 for glioma resection should enhance excision of EGFR+ tumors and could be incorporated into current PpIX strategies to further enhance treatment in the general glioma case. Clin Cancer Res; 1–10. ©2016 AACR.
- Received June 1, 2016.
- Revision received September 26, 2016.
- Accepted October 14, 2016.
- ©2016 American Association for Cancer Research.