Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Identification of a class 3 aldehyde dehydrogenase in human saliva and increased levels of this enzyme, glutathione S-transferases, and DT-diaphorase in the saliva of subjects who continually ingest large quantities of coffee or broccoli.

L Sreerama, M W Hedge and N E Sladek
L Sreerama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M W Hedge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N E Sladek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Human saliva was tested for the presence of cytosolic class 3 aldehyde dehydrogenase, glutathione S-transferases alpha, mu, and pi, and DT-diaphorase, enzymes that are known to catalyze the biotransformation of many xenobiotics, including some that are carcinogens and some that are antineoplastic agents. Each of these enzymes was found to be present in this fluid. Inducers of these enzymes are known to be abundantly present in the human diet, especially in certain vegetables and fruits. Further investigation revealed that the salivary content of these enzymes rapidly, coordinately, and markedly increased upon daily consumption of relatively large amounts of coffee or broccoli. The enzyme activities of interest rapidly returned to basal levels when these substances were removed from the diet. Given the important role that cytosolic class 3 aldehyde dehydrogenase, the glutathione S-transferases, and DT-diaphorase are thought to play in determining the carcinogenic potential of some cancer-producing agents as well as the cytotoxic potential of some antineoplastic agents, and assuming that their salivary levels reflect their tissue levels, quantification of the salivary content of one or more of these enzymes, a noninvasive and relatively easy undertaking, could be useful in: (a) preliminarily assessing the chemopreventive potential of various diets and drugs; (b) establishing the optimal dose and schedule in Phase I clinical trials for any putatively chemopreventive diets or drugs of interest; and (c) the rational selection and use of chemotherapeutic agents, since several are inactivated, and a few are activated, by these enzymes; alternatively, the antineoplastic agent could be selected first and then a diet that enables the agent to achieve its full therapeutic potential would be selected based on whether high or low enzyme activity would be favorable in that regard. Such measurements may also be useful as an indicator when exposure to carcinogenic/teratogenic/otherwise toxic environmental/industrial/dietary agents that induce these enzymes is suspected.

PreviousNext
Back to top
October 1995
Volume 1, Issue 10
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of a class 3 aldehyde dehydrogenase in human saliva and increased levels of this enzyme, glutathione S-transferases, and DT-diaphorase in the saliva of subjects who continually ingest large quantities of coffee or broccoli.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Identification of a class 3 aldehyde dehydrogenase in human saliva and increased levels of this enzyme, glutathione S-transferases, and DT-diaphorase in the saliva of subjects who continually ingest large quantities of coffee or broccoli.
L Sreerama, M W Hedge and N E Sladek
Clin Cancer Res October 1 1995 (1) (10) 1153-1163;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Identification of a class 3 aldehyde dehydrogenase in human saliva and increased levels of this enzyme, glutathione S-transferases, and DT-diaphorase in the saliva of subjects who continually ingest large quantities of coffee or broccoli.
L Sreerama, M W Hedge and N E Sladek
Clin Cancer Res October 1 1995 (1) (10) 1153-1163;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement