Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model.

N I Goldstein, M Prewett, K Zuklys, P Rockwell and J Mendelsohn
N I Goldstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Prewett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Zuklys
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Rockwell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Mendelsohn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The epidermal growth factor receptor (EGFR) is a protein tyrosine kinase expressed on many types of tumor cells, including breast, ovarian, bladder, head and neck, and prostatic carcinoma. There seems to be an association between up-regulation of the EGFR and poor clinical prognosis for a number of human cancers. The 225 antibody is a highly specific murine monoclonal antibody that binds specifically to the human EGFR with an affinity equal to its ligand, competes with the ligand for binding, and blocks activation of the receptor tyrosine kinase. In addition, 225 has been shown to inhibit the growth of human tumor xenografts in athymic nude mice. The 225 antibody has recently been chimerized with human IgG1 in its constant region to increase its clinical utility by decreasing the potential for generation of human antimouse antibodies in recipients. This report compares the biological effects of 225 and its chimeric counterpart (designated C225) against established A431 tumor xenografts in nude mice. The results of these experiments indicated that C225 was more effective than 225 in inhibiting tumor growth in this model. In addition, many of the animals treated with C225 were tumor free at the end of each treatment protocol. It was determined that the dissociation constant of C225 was about 5-fold lower than 225. This suggested that the increased capacity of C225 to compete with ligand for binding to the EGFR was responsible for its enhanced in vivo antitumor effect.

PreviousNext
Back to top
November 1995
Volume 1, Issue 11
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model.
N I Goldstein, M Prewett, K Zuklys, P Rockwell and J Mendelsohn
Clin Cancer Res November 1 1995 (1) (11) 1311-1318;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model.
N I Goldstein, M Prewett, K Zuklys, P Rockwell and J Mendelsohn
Clin Cancer Res November 1 1995 (1) (11) 1311-1318;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement