Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

Pharmacokinetic Model-Predicted Anticancer Drug Concentrations in Human Tumors

James M. Gallo, Paolo Vicini, Amy Orlansky, Shaolan Li, Feng Zhou, Jianguo Ma, Sharon Pulfer, Michel A. Bookman and Ping Guo
James M. Gallo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paolo Vicini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amy Orlansky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shaolan Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feng Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianguo Ma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sharon Pulfer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michel A. Bookman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ping Guo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-04-0822 Published December 2004
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

In an era when molecular and targeted anticancer therapeutics is a major focus and when understanding drug dynamics in tumor is critical, it seems advantageous to be able to relate drug concentrations in tumors to corresponding biological end points. To that end, a novel method, based on physiologically based hybrid pharmacokinetic models, is presented to predict human tumor drug concentrations. Such models consist of a forcing function, describing the plasma drug concentration-time profile, which is linked to a model describing drug disposition in tumors. The hybrid models are originally derived from preclinical data and then scaled to humans. Integral to the scale-up procedure is the ability to derive human forcing functions directly from clinical pharmacokinetic data. Three examples of this approach are presented based on preclinical investigations with carboplatin, topotecan, and temozolomide. Translation of these preclinical hybrid models to humans used a Monte Carlo simulation technique that accounted for intrasubject and intersubject variability. Different pharmacokinetic end points, such as the AUC tumor, were extracted from the simulated human tumor drug concentrations to show how the predicted drug concentrations might be used to select drug-dosing regimens. It is believed that this modeling strategy can be used as an aid in the drug development process by providing key insights into drug disposition in tumors and by offering a foundation to optimize drug regimen design.

  • Received April 29, 2004.
  • Revision received September 2, 2004.
  • Accepted September 2, 2004.
View Full Text
PreviousNext
Back to top
Clinical Cancer Research: 10 (23)
December 2004
Volume 10, Issue 23
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacokinetic Model-Predicted Anticancer Drug Concentrations in Human Tumors
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Pharmacokinetic Model-Predicted Anticancer Drug Concentrations in Human Tumors
James M. Gallo, Paolo Vicini, Amy Orlansky, Shaolan Li, Feng Zhou, Jianguo Ma, Sharon Pulfer, Michel A. Bookman and Ping Guo
Clin Cancer Res December 1 2004 (10) (23) 8048-8058; DOI: 10.1158/1078-0432.CCR-04-0822

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Pharmacokinetic Model-Predicted Anticancer Drug Concentrations in Human Tumors
James M. Gallo, Paolo Vicini, Amy Orlansky, Shaolan Li, Feng Zhou, Jianguo Ma, Sharon Pulfer, Michel A. Bookman and Ping Guo
Clin Cancer Res December 1 2004 (10) (23) 8048-8058; DOI: 10.1158/1078-0432.CCR-04-0822
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Induction of Apoptosis by Flavopiridol in Human Neuroblastoma Cells Is Enhanced under Hypoxia and Associated With N-myc Proto-oncogene Down-Regulation
  • Efficacy and Safety Evaluation of Human Reovirus Type 3 in Immunocompetent Animals
  • Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Does Not Improve Paclitaxel Effect in an Orthotopic Mouse Model of Lung Cancer
Show more Regular Articles

Experimental Therapeutics, Preclinical Pharmacology

  • Ring Finger Protein 43 as a New Target for Cancer Immunotherapy
  • ZD6474, a Potent Inhibitor of Vascular Endothelial Growth Factor Signaling, Combined With Radiotherapy
  • 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Inhibitor, Fluvastatin, as a Novel Agent for Prophylaxis of Renal Cancer Metastasis
Show more Experimental Therapeutics, Preclinical Pharmacology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement