Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells

Elizabeth A. Lafleur, Nadezhda V. Koshkina, John Stewart, Shu-Fang Jia, Laura L. Worth, Xiaoping Duan and Eugenie S. Kleinerman
Elizabeth A. Lafleur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadezhda V. Koshkina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Stewart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shu-Fang Jia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura L. Worth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoping Duan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eugenie S. Kleinerman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-04-0353 Published December 2004
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose: The process of metastasis requires the single tumor cell that seeds the metastatic clone to complete a complex series of steps. Identifying factors responsible for these steps is essential in developing and improving targeted therapy for metastasis. Resistance to receptor-mediated cell death, such as the Fas/Fas ligand pathway, is one mechanism commonly exploited by metastatic cell populations.

Experimental Design and Results: LM7, a subline of the SAOS human osteosarcoma cell line with low Fas expression, was selected for its high metastatic potential in an experimental nude mouse model. When transfected with the full-length Fas gene (LM7-Fas), these cells expressed higher levels of Fas than the parental LM7 cells or LM7-neo control-transfected cells. These cells were also more sensitive to Fas-induced cell death than controls. When injected intravenously into nude mice, the LM7-Fas cell line produced a significantly lower incidence of tumor nodules than control cell lines. Lung weight and tumor nodule size were also decreased in those mice injected with LM7-Fas. Levels of Fas were quantified in osteosarcoma lung nodules from 17 patients. Eight samples were Fas negative, whereas the remaining 9 were only weakly positive compared with normal human liver (positive control).

Conclusions: Our results demonstrate that altering Fas expression can impact the metastatic potential of osteosarcoma cells. We conclude that the increase of Fas on the surface of the LM7 osteosarcoma cells increased their sensitivity to Fas-induced cell death in the microenvironment of the lung, where Fas ligand is constitutively expressed. Thus, loss of Fas expression is one mechanism by which osteosarcoma cells may evade host resistance mechanisms in the lung, increasing metastatic potential. Fas may therefore be a new therapeutic target for osteosarcoma.

  • Received February 24, 2004.
  • Revision received August 20, 2004.
  • Accepted September 2, 2004.
View Full Text
PreviousNext
Back to top
Clinical Cancer Research: 10 (23)
December 2004
Volume 10, Issue 23
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells
Elizabeth A. Lafleur, Nadezhda V. Koshkina, John Stewart, Shu-Fang Jia, Laura L. Worth, Xiaoping Duan and Eugenie S. Kleinerman
Clin Cancer Res December 1 2004 (10) (23) 8114-8119; DOI: 10.1158/1078-0432.CCR-04-0353

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells
Elizabeth A. Lafleur, Nadezhda V. Koshkina, John Stewart, Shu-Fang Jia, Laura L. Worth, Xiaoping Duan and Eugenie S. Kleinerman
Clin Cancer Res December 1 2004 (10) (23) 8114-8119; DOI: 10.1158/1078-0432.CCR-04-0353
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • Expression and Functional Role of CCR9 in Prostate Cancer Cell Migration and Invasion
  • A Novel Ex vivo Model System for Evaluation of Conditionally Replicative Adenoviruses Therapeutic Efficacy and Toxicity
  • Prognostic Impact of Hypoxia-Inducible Factors 1α and 2α in Colorectal Cancer Patients
Show more Regular Articles

Cancer Biology

  • Expression and Functional Role of CCR9 in Prostate Cancer Cell Migration and Invasion
  • Autocrine Motility Factor Signaling Enhances Pancreatic Cancer Metastasis
Show more Cancer Biology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement