Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cancer Prevention

Inhibition of Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Is Not Sufficient to Account for Indole-3-Carbinol–Induced Apoptosis in Some Breast and Prostate Tumor Cells

Lynne M. Howells, E. Ann Hudson and Margaret M. Manson
Lynne M. Howells
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Ann Hudson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margaret M. Manson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-05-0348 Published December 2005
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose and Experimental Design: Indole-3-carbinol has been proposed to induce apoptosis via a mechanism involving inhibition of protein kinase B (PKB) signaling in breast and prostate tumor cell lines. However, no functional data exist, and the effect of indole-3-carbinol on viability is known to be highly cell type specific. Here, we examine any requirement for PKB inhibition in induction of apoptosis by indole-3-carbinol in the MDA MB468 cell line using in vitro kinase assays, transfection, Western blotting, and flow cytometry. Comparison is also made with MCF10CA1 breast and PC3 prostate tumor cells.

Results: Indole-3-carbinol directly inhibited activity of phosphatidylinositol 3-kinase (PI3K) immunoprecipitated from HBL100 or MDA MB468 cells in vitro. Nonetheless, we present three lines of evidence that inhibition of PI3K/PKB signaling is not required for induction of apoptosis by indole-3-carbinol. First, 50% inhibition of PKB phosphorylation by LY294002 resulted in only 15% apoptosis after 72 hours, whereas similar PKB inhibition by indole-3-carbinol coincided with 30% apoptosis after only 24 hours. Second, induction of phospho-PKB (p-PKB) levels following stimulation with epidermal growth factor did not prevent indole-3-carbinol–induced apoptosis. Third, overexpression of active PKBα did not prevent induction of apoptosis by indole-3-carbinol. Inhibition of PKB phosphorylation by LY294002 in the PC3 and MCF10CA1 tumor cell lines similarly failed to result in a significant increase in apoptosis.

Conclusions: Our results show that inhibition of PI3K/PKB signaling by indole-3-carbinol or LY294002 is not directly correlated with induction of apoptosis in several breast or prostate cell lines.

  • Indole-3-carbinol
  • chemoprevention
  • PI3K
  • PKB
  • EGF

Footnotes

  • Grant support: UK Medical Research Council grant G0100872.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Note: Some of these data have been published in preliminary form as an abstract: Hudson EA et al. Cancer Epidemiology Biomarkers and Prevention (2003) 1298S.

    • Accepted September 8, 2005.
    • Received February 15, 2005.
    • Revision received August 12, 2005.
View Full Text
PreviousNext
Back to top
Clinical Cancer Research: 11 (23)
December 2005
Volume 11, Issue 23
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Is Not Sufficient to Account for Indole-3-Carbinol–Induced Apoptosis in Some Breast and Prostate Tumor Cells
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inhibition of Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Is Not Sufficient to Account for Indole-3-Carbinol–Induced Apoptosis in Some Breast and Prostate Tumor Cells
Lynne M. Howells, E. Ann Hudson and Margaret M. Manson
Clin Cancer Res December 1 2005 (11) (23) 8521-8527; DOI: 10.1158/1078-0432.CCR-05-0348

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inhibition of Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Is Not Sufficient to Account for Indole-3-Carbinol–Induced Apoptosis in Some Breast and Prostate Tumor Cells
Lynne M. Howells, E. Ann Hudson and Margaret M. Manson
Clin Cancer Res December 1 2005 (11) (23) 8521-8527; DOI: 10.1158/1078-0432.CCR-05-0348
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Cyclin D1 as a Target for Cancer Chemoprevention
  • Preventing Colorectal Neoplasia Methods: Means and Myths
  • Roesmary and cancer prevention: Preclinical perspectives
Show more Cancer Prevention
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement