Abstract
Purpose: To develop novel orthotopic xenograft models of medulloblastoma in severe combined immunodeficient mice and to evaluate the in vivo antitumor efficacy of valproic acid.
Experimental Design: Orthotopic xenografts were developed by injecting 103 to 105 tumor cells from four medulloblastoma cell lines (D283-MED, DAOY, MHH-MED-1, and MEB-MED-8A) into the right cerebellum of severe combined immunodeficient mice. Animals were then examined for reproducibility of tumorigenicity, cell number-survival time relationship, and histopathologic features. Tumor growth was monitored in vivo by serially sectioning the xenograft brains at 2, 4, 6, and 8 weeks postinjection. Valproic acid treatment, administered at 600 μg/h for 2 weeks via s.c. osmotic minipumps, was initiated 2 weeks after injection of 105 medulloblastoma cells, and treated and untreated animals were monitored for differences in survival. Changes in histone acetylation, proliferation, apoptosis, differentiation, and angiogenesis in xenografts were also evaluated.
Results: Tumorigenicity was maintained at 100% in D283-MED, DAOY, and MHH-MED-1 cell lines. These cerebellar xenografts displayed histologic features and immunohistochemical profiles (microtubule-associated protein 2, glial fibrillary acidic protein, and vimentin) similar to human medulloblastomas. Animal survival time was inversely correlated with injected tumor cell number. Treatment with valproic acid prolonged survival time in two (D283-MED and MHH-MED-1) of the three models and was associated with induction of histone hyperacetylation, inhibition of proliferation and angiogenesis, and enhancement of apoptosis and differentiation.
Conclusion: We have developed intracerebellar orthotopic models that closely recapitulated the biological features of human medulloblastomas and characterized their in vivo growth characteristics. Valproic acid treatment of these xenografts showed potent in vivo anti-medulloblastoma activity. These xenograft models should facilitate the understanding of medulloblastoma pathogenesis and future preclinical evaluation of new therapies against medulloblastoma.
- Medulloblastomal
- orthotopic model
- histone deacetylase inhibitor
- valproic acid
- animal survival
Footnotes
-
Grant support: Childhood Brain Tumor Foundation and National Brain Tumor Foundation (X.N. Li), John S. Dunn Research Foundation, Robert J. Kleberg, Jr., and Helen C. Kleberg Foundation, Gillson Longenbaugh Foundation and Cancer Fighters of Houston, Inc. (C.C. Lau).
-
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
- Accepted May 11, 2006.
- Received December 30, 2005.
- Revision received May 3, 2006.