Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts.

K Jin Kim, Lihong Wang, Yi-Chi Su, G Yancey Gillespie, Amandeep Salhotra, Bachchu Lal and John Laterra
K Jin Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lihong Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yi-Chi Su
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Yancey Gillespie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amandeep Salhotra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bachchu Lal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Laterra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-05-1793 Published February 2006
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

PURPOSE: Hepatocyte growth factor (HGF) and its receptor Met are involved in the initiation, progression, and metastasis of numerous systemic and central nervous system tumors. Thus, an anti-HGF monoclonal antibody (mAb) capable of blocking the HGF-Met interaction could have broad applicability in cancer therapy. EXPERIMENTAL DESIGN: An anti-HGF mAb L2G7 that blocks binding of HGF to Met was generated by hybridoma technology, and its ability to inhibit the various biological activities of HGF was measured by in vitro assays. The ability of L2G7 to inhibit the growth of tumors was determined by establishing s.c. and intracranial xenografts of human U87 and U118 glioma cell lines in nude mice, and treatment with 100 microg of L2G7 or control given i.p. twice per week. RESULTS: MAb L2G7 strongly inhibited all biological activities of HGF measured in vitro, including cell proliferation, cell scattering, and endothelial tubule formation. Treatment with L2G7 completely inhibited the growth of established s.c. xenografts in nude mice. Moreover, systemic administration of L2G7 from day 5 induced the regression of intracranial U87 xenografts and dramatically prolonged the survival of tumor-bearing mice from a median of 39 to >90 days. L2G7 treatment of large intracranial tumors (average tumor size, 26.7 mm(3)) from day 18 induced substantial tumor regression (control group, 134.3 mm(3); L2G7 treated group, 11.7 mm(3)) by day 29 and again prolonged animal survival. CONCLUSIONS: These findings show that blocking the HGF-Met interaction with systemically given anti-HGF mAb can have profound antitumor effects even within the central nervous system, a site previously believed to be resistant to systemic antibody-based therapeutics.

PreviousNext
Back to top
Clinical Cancer Research: 12 (4)
February 2006
Volume 12, Issue 4
  • Table of Contents
  • About the Cover

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts.
K Jin Kim, Lihong Wang, Yi-Chi Su, G Yancey Gillespie, Amandeep Salhotra, Bachchu Lal and John Laterra
Clin Cancer Res February 15 2006 (12) (4) 1292-1298; DOI: 10.1158/1078-0432.CCR-05-1793

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts.
K Jin Kim, Lihong Wang, Yi-Chi Su, G Yancey Gillespie, Amandeep Salhotra, Bachchu Lal and John Laterra
Clin Cancer Res February 15 2006 (12) (4) 1292-1298; DOI: 10.1158/1078-0432.CCR-05-1793
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement