Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cancer Therapy: Preclinical

Silibinin Suppresses Growth of Human Prostate Carcinoma PC-3 Orthotopic Xenograft via Activation of Extracellular Signal-Regulated Kinase 1/2 and Inhibition of Signal Transducers and Activators of Transcription Signaling

Rana P. Singh, Komal Raina, Gagan Deep, Daniel Chan and Rajesh Agarwal
Rana P. Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Komal Raina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gagan Deep
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Chan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajesh Agarwal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-08-1846 Published January 2009
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose: Silibinin is currently under phase II clinical trial in prostate cancer patients; however, its antitumor effects and mechanisms are not completely understood. Herein, we studied the efficacy and associated mechanisms of silibinin against orthotopically growing advanced human prostate carcinoma PC-3 tumors.

Experimental Design: Athymic male mice were orthotopically implanted with PC-3 cells in prostate and 1 week later after surgical recovery were gavaged daily with silibinin (100 mg/kg body weight) for 7 weeks.

Results: Silibinin treatment reduced the lower urogenital weight (including tumor, prostate, and seminal vesicle) by 40% (P < 0.05) without any toxicity in mice. Silibinin decreased proliferating cell nuclear antigen expression and proliferating cells (P < 0.001) but increased cleaved caspase-3-positive cells (P < 0.01) and apoptotic cells (P < 0.001) and suppressed tumor microvessel density (P < 0.001) and vascular endothelial growth factor expression (P = 0.02). Decreased levels of cyclin-dependent kinases 2, 4, and 6, CDC2, and cyclins D1, D3, E, and A were observed, indicating an inhibitory effect of silibinin on cell cycle progression. Silibinin showed a tremendous increase in extracellular signal-regulated kinase 1/2 phosphorylation but decreased c-Jun NH2-terminal kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. A moderate decrease in phosphorylated and total levels of Akt was also noted. A marked inhibitory effect of silibinin on signal transducers and activators of transcription (STAT) 1 (Tyr701), STAT1 (Ser727), STAT3 (Tyr705), STAT3 (Ser727), and STAT5 (Tyr794) phosphorylation together with a decrease in their total levels was also observed.

Conclusions: These findings provide evidence for antitumor efficacy of silibinin against orthotopically growing prostate tumor in mice with multitargeted mechanistic insights and support its clinical investigation in prostate cancer.

  • prostate cancer
  • silibinin
  • ERK1/2
  • STAT

Footnotes

  • Grant support: National Cancer Institute RO1 grant CA102514.

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Accepted September 23, 2008.
    • Received July 16, 2008.
    • Revision received September 16, 2008.
View Full Text
PreviousNext
Back to top
Clinical Cancer Research: 15 (2)
January 2009
Volume 15, Issue 2
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Silibinin Suppresses Growth of Human Prostate Carcinoma PC-3 Orthotopic Xenograft via Activation of Extracellular Signal-Regulated Kinase 1/2 and Inhibition of Signal Transducers and Activators of Transcription Signaling
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Silibinin Suppresses Growth of Human Prostate Carcinoma PC-3 Orthotopic Xenograft via Activation of Extracellular Signal-Regulated Kinase 1/2 and Inhibition of Signal Transducers and Activators of Transcription Signaling
Rana P. Singh, Komal Raina, Gagan Deep, Daniel Chan and Rajesh Agarwal
Clin Cancer Res January 15 2009 (15) (2) 613-621; DOI: 10.1158/1078-0432.CCR-08-1846

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Silibinin Suppresses Growth of Human Prostate Carcinoma PC-3 Orthotopic Xenograft via Activation of Extracellular Signal-Regulated Kinase 1/2 and Inhibition of Signal Transducers and Activators of Transcription Signaling
Rana P. Singh, Komal Raina, Gagan Deep, Daniel Chan and Rajesh Agarwal
Clin Cancer Res January 15 2009 (15) (2) 613-621; DOI: 10.1158/1078-0432.CCR-08-1846
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • PK/PD Model of a Bispecific DART Molecule in Monkeys
  • STAT3/HOTAIR/EZH2 Regulates HNSCC Growth
  • TAZ is a Potent Mediator of aRMS Tumorigenesis
Show more Cancer Therapy: Preclinical
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement