Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Imaging, Diagnosis, Prognosis

Utility of p16 Immunohistochemistry for the Identification of Lynch Syndrome

Artemio Payá, Cristina Alenda, Lucía Pérez-Carbonell, Estefanía Rojas, José-Luis Soto, Carmen Guillén, Adela Castillejo, Victor M. Barberá, Alfredo Carrato, Antoni Castells, Xavier Llor, Montserrat Andreu, Jim Koh, Greg H. Enders, Susana Benlloch and Rodrigo Jover
Artemio Payá
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cristina Alenda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lucía Pérez-Carbonell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Estefanía Rojas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José-Luis Soto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carmen Guillén
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adela Castillejo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victor M. Barberá
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfredo Carrato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antoni Castells
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xavier Llor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Montserrat Andreu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jim Koh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Greg H. Enders
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susana Benlloch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rodrigo Jover
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-08-3116 Published May 2009
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose: Immunohistochemistry for mismatch repair proteins has shown utility in the identification of Lynch syndrome, but majority of tumors with loss of MLH1 expression are due to sporadic hypermethylation of the MLH1 promoter. These tumors can also show epigenetic silencing of other genes, such as p16. The aim of our study is to evaluate the utility of p16 immunohistochemistry in the prediction of MLH1 germline mutations.

Experimental Design: p16 immunohistochemistry was appropriately evaluated in 79 colorectal cancers with loss of MLH1 expression. Methylation of MLH1 and p16 were quantitatively studied using real-time PCR assay Methylight. BRAF V600E mutation in tumor tissue was also investigated. Genetic testing for germline mutation of MLH1 was made on 52 patients.

Results: Loss of p16 expression was seen in 21 of 79 samples (26.6%). There was found statistically significant association between p16 expression and p16 methylation (P < 0.001), MLH1 methylation (P < 0.001), and BRAF mutation (P < 0.005). All tumors with loss of p16 expression showed hypermethylation of p16 (21 of 21), 95.2% (20 of 21) showed MLH1 methylation, and 71.4% (15 of 21) were mutated for BRAF V600E. Mutational analysis showed pathogenic germline mutations in 8 of the patients, harboring 10 tumors. All 10 of these tumors showed normal staining of p16 in the immunochemical analysis.

Conclusions: p16 immunohistochemistry is a good surrogate marker for p16 and MLH1 epigenetic silencing due to hypermethylation, and is useful as screening tool in the selection of patients for genetic testing in Lynch syndrome.

  • colorectal cancer
  • Lynch syndrome
  • p16
  • immunohistochemistry
  • diagnosis

Translational Relevance

The main contribution of this article is the use of p16 immunohistochemistry in the identification of patients with colorectal cancer and high level of suspicion of Lynch syndrome. Patients with tumors showing loss of MLH1 expression can be hereditary or sporadic. In this study, we show that p16 immunohistochemistry is a good surrogate marker for both p16 and MLH1 hypermethylation. Patients whose tumors have loss of both MLH1 and p16 expression have hypermethylated colorectal cancer and, therefore, their tumors are sporadic. These patients can be confidently excluded for genetic testing of MLH1. P16 immunohistochemistry is easy to perform and available for every pathology department, taking advantage over other more exigent techniques such as BRAF mutation.

Background

Lynch syndrome is an autosomal dominant disorder that accounts for ∼3% to 4% of all colorectal cancers (CRC; ref. 1). Lynch syndrome is caused by germline mutations in the DNA mismatch repair genes, mainly MLH1, MSH2, MSH6, and PMS2 (1). Defects in this pathway lead to changes in the length of nucleotide repeat sequences, a phenomenon called microsatellite instability (MSI), which constitutes the molecular hallmark of Lynch syndrome (2). These tumors can also be identified by immunohistochemical loss of mismatch repair proteins (3, 4). The presence of MSI may be observed in up to 10% to 15% of sporadic CRC. In these cases, mismatch repair impairment is caused by epigenetic silencing of MLH1, due to MLH1 promoter methylation (5).

Because molecular characterization of Lynch syndrome was established, the identification of gene carriers has become a critical issue. Identification of patients with Lynch syndrome has important clinical implications because surveillance for CRC and other cancers in this population is able to reduce cancer mortality and is cost effective (6). A previous study from our group established that fulfillment of revised Bethesda criteria (7), followed by either MSI testing or mismatch repair proteins immunohistochemistry, is a sensible approach to preselect patients for genetic testing (4). Patients having tumors with loss of expression of MSH2 or MSH6 are suspected carriers of germline mutations of any of these genes, but patients whose tumors show loss of MLH1 may either have hereditary or sporadic disease. The majority of sporadic tumors with loss of MLH1 expression belong to a group of CRCs that are hypermethylated at multiple genetic loci. These CRC have been described as displaying the CpG Island Methylator Phenotype (8, 9), and a panel of markers has been proposed for its diagnosis (10). One of the loci frequently methylated in these CpG island methylator phenotype tumors is CDKN2A (p16). Presumably, some of the tumors with loss of MLH1 caused by epigenetic silencing through aberrant methylation should also have a silenced p16 and, therefore, immunohistochemical loss of staining of this protein. The aim of our study is to evaluate the value of p16 immunohistochemistry in the prediction of MLH1 germline mutations in patients with tumors that show loss of MLH1.

Materials and Methods

Subjects. Immunohistochemical analysis of MLH1 was done in 2,401 CRC tumors. Tumor tissue was obtained from a series of 2,246 nonselected surgical CRC specimens from the EPICOLON study (n = 1.281; ref. 11) and from the Pathology Department of the Hospital General Universitario of Alicante, collected between the years 1999 to 2007 (n = 965). The remaining 155 tumors were obtained from patients of the Genetic Counselling Unit of the Hospital General Universitario of Elche. Demographic, clinical, and tumor-related characteristics of probands, as well as a detailed family history, were obtained using a pre-established questionnaire, as described elsewhere (4). Loss of MLH1 expression was found in 124 tumors (5.2%), from 120 patients. All these tumors showed normal expression of MSH2 and MSH6. In 32 cases, there was not enough tissue to perform immunohistochemical or molecular studies and they were excluded from this study. Finally, the study was done in 92 tumors from 88 patients that showed loss of MLH1 immunohistochemical expression. Eighty-three tumors were nonselected population-based CRC specimens and nine were from the Genetic Counselling Unit. Figure 1 shows a flow chart of the molecular analysis done on the samples.

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Flow diagram for the immunohistochemical and molecular analysis done in tumors.

Immunohistochemistry. Immunohistochemical analysis of MLH1, MSH2, MSH6, and PMS2 was done in blocks of formalin-fixed paraffin-embedded tumor tissue as previously described (4, 12).

Immunohistochemical analysis of p16 expression was done on tissue microarray. One of the requirements for inclusion in the study was that enough tumor tissue was present within the block of wax-embedded tissue to facilitate subsequent tissue microarray construction. The representative tumor regions were identified and marked on the H&E-stained slides and subsequently identified on the corresponding tissue blocks. Tissue cylinders of diameter of 1 mm were punched out from the marked areas of each block and incorporated into a recipient paraffin block using a precision instrument—the tissue arrayer (Beecher Instruments). A total of six tissue microarrays were constructed for the study. Tissue microarrays contained between 30 and 50 cores of 1-mm needle size. For inclusion in the study, at least two evaluable cores of tumor tissue were required per case. Four-micrometer-thick sections were cut from tissue microarrays. The slides were put on a TechMate 500 immunostainer and incubated for 30 min at room temperature with the mouse monoclonal antibody JC2, which recognizes the first ankyrin repeat of p16 (provided by Dr. Jim Koh, Duke University, Durham, NC; ref. 13). The antibody was detected by the Envision+ technique (Dako). Processed immunohistochemical slides were evaluated by two pathologists. A tumor was considered to have normal expression for p16 when unequivocal nuclear staining was seen in some neoplastic epithelial cells, with or without cytoplasmatic staining. Cases with loss of expression included those cases with lack of expression in tumor cells in presence of internal positive control (stromal cells or blood vessels). Samples were considered not scored when no staining of internal control was seen.

MLH1 and CDKN2A methylation analysis. Genomic DNA was extracted from tumor paraffin-embedded tissue blocks. Two tissue cylinders of 1 mm of diameter were punched out with the tissue arrayer from the previously selected tumor areas. QiaAmp DNA Mini kit for DNA extraction was used according to the manufacturer's protocol after removal of paraffin by xylene.

The MLH1 and CDKN2A (p16) methylation analysis was done by real-time PCR assay Methylight as previously described (Applied Biosystems; ref. 14). Bisulfite conversion was made with the EZ DNA methylation-Gold kit as described by the manufacturer (Zymo Research). Quantitative PCR was done by ABI 7500 (Applied Biosystems). Primers and a probe, designed to detect bisulfite converted fully methylated MLH1 and p16 DNAs, have been described and used previously (10, 15–17). The PCR reactions were done according to the protocols (16, 18).

To calculate the percentage of methylated reference, we established the dichotomization threshold at percentage of methylated reference of 4, to obtain a bimodal distribution in the MLH1 and CDKN2A methylation loci. Methylation-positive (percentage of methylated reference, >4) MLH1 and CDKN2A samples could be distinguished from negative (percentage of methylated reference, ≤4) ones.

BRAF V600E mutation. V600E BRAF mutation was detected using specific TaqMan probes by real-time PCR (ABI PRISM 7500; Applied Biosystems) and the allelic discrimination software (Applied Biosystems) as previously described by Benlloch et al. (19).

MLH1 germline genetic testing. Germline genetic alteration studies were done on genomic DNA isolated from peripheral blood leukocytes or from nontumor colon tissue as previously described (4). Point mutation analysis of MLH1 gene was done by PCR amplification and direct sequencing of the entire coding region and the exon-intron boundaries. PCR primers and conditions have been described elsewhere (20–22). Large genomic rearrangements (insertions and/or deletions) in MLH1 loci were screened by multiplex ligation-dependent probe amplification according to the manufacturer protocols (Salsa multiplex ligation-dependent probe amplification kit P003 and P008; MRC-Holland).

Data management and analysis. Data were collected and entered into the computer using MICROSOFT ACCESS software for storage and initial analysis. Further analysis was done using SPSS software (SPSS 15.0). For continuous variables, relevant measures of central tendency (means for normally distributed data and medians and interquartile ranges for skewed data) were used to explore data. The χ2 test was used for comparison of qualitative variables. A Student's t test was used for comparison of normally distributed continuous variables and a Mann-Whitney U test was used for unpaired comparison of nonnormally distributed continuous variables. A P value of <0.05 was considered significant.

Results

p16 immunohistochemistry was done in 92 tumors with loss of MLH1 expression (Fig. 2 ) from 88 patients. In 13 of the tumors, p16 immunohistochemistry could not be confidently assessed and was classified as not scored, due to absence of clear staining in stromal cells, which served as internal positive controls. Loss of p16 expression was seen in 21 of 79 samples (26.6%; Fig. 2). Characteristics of tumors according to p16 expression status can be seen in Table 1 . There was a statistically significant association between p16 expression and p16 methylation (P < 0.001), MLH1 methylation (P < 0.001), and BRAF mutation (<0.005). All tumors with loss of p16 expression showed hypermethylation of p16 (21 of 21), 95.2% (20 of 21) showed MLH1 methylation, and 71.4% (15 of 21) were mutated for BRAF V600E (Table 1). However, 20 of 41 (50%) of the tumors with p16 methylation retained p16 expression (Table 1). Tumors with loss of p16 expression showed more frequently poor differentiation. p16 immunohistochemistry was also done in 60 sporadic tumors with normal expression of MLH1 and microsatellite stability, loss of p16 expression was seen in only 5 of these tumors (3%).

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

p16 immunohistochemistry. A and C positive cases with nuclear and cytoplasmatic staining of tumor cells. B and D negative cases with stromal staining as an internal control.

View this table:
  • View inline
  • View popup
Table 1.

Characteristics of tumors regarding p16 expression

Mutational analysis of MLH1 was done in 52 of 88 patients whose tumors showed loss of MLH1 staining. Fifty-four CRC from these 52 patients were analyzed. Thirty of these patients fulfilled some of the revised Bethesda criteria, and 11 fulfilled Amsterdam II criteria. Mutational analysis showed pathogenic mutations in 8 of the patients, harboring 10 tumors. All 10 of the tumors analyzed from the 8 patients with germline pathogenic mutations in MLH1 showed normal staining of p16. All patients with germline mutations met Bethesda criteria. Moreover, all tumors from patients with germline mutations showed nonmutated BRAF and nonmethylated MLH1 (Table 2 ).

View this table:
  • View inline
  • View popup
Table 2.

Characteristics of tumors in patients with germline mutation

Table 3 shows values of sensitivity, specificity, positive and negative predictive value, and positive Likelihood ratio for Bethesda criteria, BRAF mutation, MLH1 methylation, and p16 immunohistochemistry. Different combinations of these variables for the prediction of germline MLH1 mutation can also be seen in Table 3. Values for p16 immunohistochemistry and BRAF mutation are similar, and combination of these techniques improves separately the obtained results.

View this table:
  • View inline
  • View popup
Table 3.

Values of different strategies for detecting germline mutation in tumors with MLH1 loss of expression

Discussion

Selection of patients for genetic testing in Lynch syndrome is frequently difficult in clinical practice. The use of Amsterdam criteria is capable to detect Lynch Syndrome with a high specificity but with very low sensitivity. When clinical presentation and family history are most compelling, the yield of mutational testing is often no better than 50%, and even in the best case-scenario, when Amsterdam criteria are met and a tumor shows high MSI and loss of mismatch repair protein expression, the likelihood of germline mutation detection is ∼70% to 80% (23). Other strategies, such as the revised Bethesda criteria (7), improve the sensitivity but with a high lack of specificity. With this approach, a high number of patients are sent for genetic testing based only on clinical criteria, with the subsequent expending of resources and the consequent generation of anxiety to patients and their families. Several approaches have been used for refining the selection of patients for genetic testing. The observation that patients with Lynch syndrome show a characteristic phenotype with MSI prompted to use these markers as a first prescreening modality. Then, the demonstration of the role of the immunohistochemistry and its equivalence to MSI analysis in the diagnostic algorithm of Lynch syndrome (4) improved the availability of these tools and its generalization in clinical practice, due to the possibility of performing immunohistochemistry in any pathology department. Moreover, patients with tumors showing MSH2 or MSH6 lack of expression should be directly sent for genetic testing because it is a strong indicator for mutation in these genes (23). However, this clinical-molecular strategy has had some detractors because a number of patients with Lynch syndrome might not fulfill revised Bethesda criteria (24). Sometimes family history is difficult or even impossible to obtain. Furthermore, recent studies show that, even among patients with a known high risk for Lynch syndrome, there is a marked under utilization of MSI analysis (25). For these reasons, some authors advocate for routine molecular screening of patients with CRC for Lynch syndrome using immunohistochemistry (24). Another fact that can support routine immunohistochemical study of CRC is the recognized better prognosis of mismatch repair deficient tumors (26), and the different response to 5-fluorouracil–based chemotherapy that these tumors have (27–29). In our study, we included only patients with MLH1 loss of expression, and compared molecular only with clinical-molecular approaches for diagnosis, showing that combinations of only molecular tests are at least as good as strategies that include clinical data (Table 3). Our results show that p16 immunohistochemistry can improve the results of this strategy, avoiding germline genetic testing in approximately a third of patients with loss of MLH1 expression.

Instruments for the refinement of the selection of patients with loss of MLH1 for genetic testing have been proposed. Mutation V600E in the oncogene BRAF has been suggested as characteristic of sporadic colorectal tumors with MSI, and this mutation is not detected in tumors from patients with germline mutations in MLH1 or MSH2 genes (30, 31). Several studies have shown that detection of BRAF V600E mutation could simplify the selection of CRC patients for genetic testing for Lynch syndrome (32, 33). However, the use of BRAF mutational analysis in clinical practice has been limited, probably due to the need of molecular biology resources for its implementation. The main strength of p16 immunohistochemistry for clinical use in selection of suspected Lynch syndrome patients for genetic testing is its feasibility, in contraposition to other methylation markers such as V600E BRAF mutation or MLH1 methylation (34), which are time consuming and not available for the majority of clinical centers.

Aberrant promoter hypermethylation associated with transcriptional silencing of multiple tumor suppressor genes has been proposed as a mechanistic component in the evolution of multiple cancers (35). Tumors with a critical degree of aberrant methylation have the CpG island methylator phenotype. CpG island methylator phenotype tumors show promoter hypermethylation in multiple genes, including p16, p14, MGMT, and MLH1 among others. Loss of the INK4a/ARF/INK4b locus is among the most frequent cytogenetic events in human cancer. The products of this locus p15INK4a, p16INK4b, and ADP ribosylation factor play widespread and independent roles in tumorsuppression (36). Specific somatic loss of p16, through point mutation or small deletion, has been reported in human cancer (37), but epigenetic silencing through aberrant promoter methylation is the most common mechanism of inactivation (36, 38). p16 loss of expression provokes increase in proliferation and vascularization in colon cancer cells (13, 39).

Limitations of our study are the small number of patients with MLH1 germline mutations that we included. However, the excellent sensitivity of p16 expression for MLH1 methylation, with virtually all the cases with loss of p16 expression being methylated, makes p16 immunohistochemistry a robust marker for this event. Most samples include abundant stromal components that stain for p16, providing an internal positive control to verify adequate tissue preservation and technical success of the staining. Another limitation is the existence of cases with p16 hypermethylation that showed normal p16 staining. This fact may be caused, at least in part, by the target region analyzed for the p16 methylation. The Methylight system (primers and probe) used here has been described elsewhere, being useful to characterize the CpG island methylator phenotype (18). The amplicon sequence analyzed is located at exon 1α. Using in vitro models, Gonzalgo et al. (40) observed that p16 expression could occur in the presence of a relatively heavily methylated coding domain (exon 1α, named as region D). Methylation of certain regions upstream of the p16 exon 1α may be more critical for transcription activity (particularly region C). Exonic CpG islands are more susceptible to de novo methylation than promoter islands. The cancer-specific promoter methylation might be a result of spreading from exonic foci and selection of cells whose growth is deregulated by the gene inactivation (41).

In conclusion, our results suggest that the immunohistochemical study of p16 could improve the selection of patients for genetic testing of germline mutations in MLH1. Patients with CRC and MLH1 loss of expression, whose tumors also show loss of p16 expression can be reasonably excluded for genetic testing because this loss of expression indicates, with high possibility, aberrant hypermethylation and epigenetic silencing of both p16 and MLH1 genes.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Footnotes

  • Grant support: Generalitat Valenciana Conselleria de Sanitat (AP 021/07), Fundación de la CV para la Investigación en el Hospital General Universitario de Alicante (2008). Beca predoctoral Instituto de Salud Carlos III (FI07/00303, Lucía Pérez-Carbonell).

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

  • Note: A. Payá and C. Alenda contributed equally to this work.

  • The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive license (or nonexclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Gut and any other BMJPGL products to exploit all subsidiary rights, as set out in our license (http://gut.bmj.com/ifora/licence.pdf).

    • Accepted February 2, 2009.
    • Received November 29, 2008.
    • Revision received January 31, 2009.

References

  1. ↵
    Rustgi AK. The genetics of hereditary colon cancer. Genes Dev 2007;21:2525–38.
    OpenUrlAbstract/FREE Full Text
  2. ↵
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993;363:558–61.
    OpenUrlCrossRefPubMed
  3. ↵
    Jover R, Paya A, Alenda C, et al. Defective mismatch-repair colorectal cancer:clinicopathologic characteristics and usefulness of immunohistochemical analysis for diagnosis. Am J Clin Pathol 2004;122:389–94.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    Pinol V, Castells A, Andreu M, et al. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 2005;293:1986–94.
    OpenUrlCrossRefPubMed
  5. ↵
    Wheeler JM, Bodmer WF, Mortensen NJ. DNA mismatch repair genes and colorectal cancer. Gut 2000;47:148–53.
    OpenUrlFREE Full Text
  6. ↵
    Jarvinen HJ, Mecklin JP, Sistonen P. Screening reduces colorectal cancer rate in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 1995;108:1405–11.
    OpenUrlCrossRefPubMed
  7. ↵
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;96:261–8.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    Hawkins N, Norrie M, Cheong K, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 2002;122:1376–87.
    OpenUrlCrossRefPubMed
  9. ↵
    Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 2005;129:837–45.
    OpenUrlCrossRefPubMed
  10. ↵
    Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006;38:787–93.
    OpenUrlCrossRefPubMed
  11. ↵
    Pinol V, Andreu M, Castells A, Paya A, Bessa X, Rodrigo J. Frequency of hereditary non-polyposis colorectal cancer and other colorectal cancer familial forms in Spain:a multicentre, prospective, nationwide study. Eur J Gastroenterol Hepatol 2004;16:39–45.
    OpenUrlCrossRefPubMed
  12. ↵
    Xicola RM, Llor X, Pons E, et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 2007;99:244–52.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    Dai CY, Furth EE, Mick R, et al. p16(INK4a) expression begins early in human colon neoplasia and correlates inversely with markers of cell proliferation. Gastroenterology 2000;119:929–42.
    OpenUrlPubMed
  14. ↵
    Eads CA, Danenberg KD, Kawakami K, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 2000;28:E32.
    OpenUrlCrossRefPubMed
  15. ↵
    Fiegl H, Gattringer C, Widschwendter A, et al. Methylated DNA collected by tampons-a new tool to detect endometrial cancer. Cancer Epidemiol Biomarkers Prev 2004;13:882–8.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    Ogino S, Kawasaki T, Brahmandam M, et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 2006;8:209–17.
    OpenUrlCrossRefPubMed
  17. ↵
    Widschwendter M, Siegmund KD, Muller HM, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 2004;64:3807–13.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    Ogino S, Cantor M, Kawasaki T, et al. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 2006;55:1000–6.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    Benlloch S, Paya A, Alenda C, et al. Detection of BRAF V600E mutation in colorectal cancer:comparison of automatic sequencing and real-time chemistry methodology. J Mol Diagn 2006;8:540–3.
    OpenUrlCrossRefPubMed
  20. ↵
    Hampel H, Frankel W, Panescu J, et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res 2006;66:7810–7.
    OpenUrlAbstract/FREE Full Text
  21. Kolodner RD, Tytell JD, Schmeits JL, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res 1999;59:5068–74.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    Wahlberg SS, Schmeits J, Thomas G, et al. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res 2002;62:3485–92.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    Lynch HT, Boland CR, Rodriguez-Bigas MA, Amos C, Lynch JF, Lynch PM. Who should be sent for genetic testing in hereditary colorectal cancer syndromes? J Clin Oncol 2007;25:3534–42.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005;352:1851–60.
    OpenUrlCrossRefPubMed
  25. ↵
    Van Lier MG, De Wilt JH, Wagemakers JJ, et al. Underutilization of microsatellite instability analysis in colorectal cancer patients at high risk for Lynch syndrome. Scand J Gastroenterol 2009; Jan 19:1–5. [Epub ahead of print].
  26. ↵
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005;23:609–18.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    Carethers JM, Smith EJ, Behling CA, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004;126:394–401.
    OpenUrlCrossRefPubMed
  28. Jover R, Zapater P, Castells A, et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 2006;55:848–55.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349:247–57.
    OpenUrlCrossRefPubMed
  30. ↵
    Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004;10:191–5.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    Wang L, Cunningham JM, Winters JL, et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 2003;63:5209–12.
    OpenUrlAbstract/FREE Full Text
  32. ↵
    Bessa X, Balleste B, Andreu M, et al. A prospective, multicenter, population-based study of BRAF mutational analysis for Lynch syndrome screening. Clin Gastroenterol Hepatol 2008;6:206–14.
    OpenUrlCrossRefPubMed
  33. ↵
    Domingo E, Laiho P, Ollikainen M, et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 2004;41:664–8.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    Bettstetter M, Dechant S, Ruemmele P, et al. Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin Cancer Res 2007;13:3221–8.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349:2042–54.
    OpenUrlCrossRefPubMed
  36. ↵
    Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell 2006;127:265–75.
    OpenUrlCrossRefPubMed
  37. ↵
    Forbes S, Clements J, Dawson E, et al. COSMIC 2005. Br J Cancer 2006;94:318–22.
    OpenUrlCrossRefPubMed
  38. ↵
    Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001;61:3225–9.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    Gibson SL, Boquoi A, Chen T, Sharpless NE, Brensinger C, Enders GH. p16(Ink4a) inhibits histologic progression and angiogenic signaling in min colon tumors. Cancer Biol Ther 2005;4:1389–94.
    OpenUrlPubMed
  40. ↵
    Gonzalgo ML, Hayashida T, Bender CM, et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res 1998;58:1245–52.
    OpenUrlAbstract/FREE Full Text
  41. ↵
    Nguyen C, Liang G, Nguyen TT, et al. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Cancer Inst 2001;93:1465–72.
    OpenUrlAbstract/FREE Full Text
View Abstract
PreviousNext
Back to top
Clinical Cancer Research: 15 (9)
May 2009
Volume 15, Issue 9
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Utility of p16 Immunohistochemistry for the Identification of Lynch Syndrome
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Utility of p16 Immunohistochemistry for the Identification of Lynch Syndrome
Artemio Payá, Cristina Alenda, Lucía Pérez-Carbonell, Estefanía Rojas, José-Luis Soto, Carmen Guillén, Adela Castillejo, Victor M. Barberá, Alfredo Carrato, Antoni Castells, Xavier Llor, Montserrat Andreu, Jim Koh, Greg H. Enders, Susana Benlloch and Rodrigo Jover
Clin Cancer Res May 1 2009 (15) (9) 3156-3162; DOI: 10.1158/1078-0432.CCR-08-3116

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Utility of p16 Immunohistochemistry for the Identification of Lynch Syndrome
Artemio Payá, Cristina Alenda, Lucía Pérez-Carbonell, Estefanía Rojas, José-Luis Soto, Carmen Guillén, Adela Castillejo, Victor M. Barberá, Alfredo Carrato, Antoni Castells, Xavier Llor, Montserrat Andreu, Jim Koh, Greg H. Enders, Susana Benlloch and Rodrigo Jover
Clin Cancer Res May 1 2009 (15) (9) 3156-3162; DOI: 10.1158/1078-0432.CCR-08-3116
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Background
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • FDOPA PET Survival Predictions for Glioma
  • In vivo Fluorescence Lifetime Imaging for Monitoring the Cancer Treatment
  • Variability in Assessing Response in Metastatic Colorectal Cancer
Show more Imaging, Diagnosis, Prognosis
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement