Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cancer Therapy: Preclinical

Enhancement of Carboplatin-Mediated Lung Cancer Cell Killing by Simultaneous Disruption of Glutathione and Thioredoxin Metabolism

Melissa A. Fath, Iman M. Ahmad, Carmen J. Smith, Jacquelyn Spence and Douglas R. Spitz
Melissa A. Fath
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Iman M. Ahmad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carmen J. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jacquelyn Spence
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas R. Spitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-11-0736 Published October 2011
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose: Cancer cells (relative to normal cells) show increased steady-state levels of hydroperoxides that are compensated by increased glucose and hydroperoxide metabolism. The current study determined whether inhibitors of glucose and hydroperoxide metabolism could induce chemoradiosensitization by enhancing oxidative stress in lung cancer cells.

Experimental Design: A549 and NCI-H292 human lung carcinoma cells were treated with 2-deoxy-d-glucose (2DG) combined with carboplatin + ionizing radiation (IR). Lung cancer cells were further sensitized with inhibitors of glutathione (GSH)- and thioredoxin (Trx)-dependent metabolism [buthionine sulfoximine (BSO) and auranofin, respectively] in vitro and in vivo.

Results: When 2DG was combined with carboplatin + IR, clonogenic cell killing was enhanced in A549 and NCI-H292 cells, and this combination was more effective than paclitaxel + carboplatin + IR. The thiol antioxidant (N-acetylcysteine, NAC) was capable of protecting cancer cells from 2DG + carboplatin -induced cell killing. Simultaneous treatment of cancer cells with BSO and auranofin, at doses that were not toxic as single agents, also enhanced lung cancer cell killing and sensitivity to 2DG + carboplatin. This treatment combination also increased oxidation of both GSH and Trx, which were inhibited by NAC. Mice treated with auranofin + BSO showed no alterations in circulating leukocytes or red blood cells. Xenograft lung tumor growth in mice was more effectively inhibited by treatment with auranofin + BSO + carboplatin than animals treated with carboplatin or auranofin + BSO alone.

Conclusions: These results show in vitro and in vivo that simultaneous inhibition of GSH and Trx metabolism can effectively inhibit lung cancer cell growth and induce chemosensitization by a mechanism that involves thiol-mediated oxidative stress. Clin Cancer Res; 17(19); 6206–17. ©2011 AACR.

Footnotes

  • Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

  • Received March 25, 2011.
  • Revision received July 8, 2011.
  • Accepted July 30, 2011.
  • ©2011 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Clinical Cancer Research: 17 (19)
October 2011
Volume 17, Issue 19
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enhancement of Carboplatin-Mediated Lung Cancer Cell Killing by Simultaneous Disruption of Glutathione and Thioredoxin Metabolism
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Enhancement of Carboplatin-Mediated Lung Cancer Cell Killing by Simultaneous Disruption of Glutathione and Thioredoxin Metabolism
Melissa A. Fath, Iman M. Ahmad, Carmen J. Smith, Jacquelyn Spence and Douglas R. Spitz
Clin Cancer Res October 1 2011 (17) (19) 6206-6217; DOI: 10.1158/1078-0432.CCR-11-0736

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Enhancement of Carboplatin-Mediated Lung Cancer Cell Killing by Simultaneous Disruption of Glutathione and Thioredoxin Metabolism
Melissa A. Fath, Iman M. Ahmad, Carmen J. Smith, Jacquelyn Spence and Douglas R. Spitz
Clin Cancer Res October 1 2011 (17) (19) 6206-6217; DOI: 10.1158/1078-0432.CCR-11-0736
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Grant Support
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Enhanced Delivery of SN38-TOA NPs in NBs
  • Toxicity and Efficacy of a GADD34-encoding Oncolytic HSV
  • Survivin mAbs Inhibit Tumor Growth
Show more Cancer Therapy: Preclinical
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement