Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Human Cancer Biology

Recurrent Mutations of MYD88 and TBL1XR1 in Primary Central Nervous System Lymphomas

Alberto Gonzalez-Aguilar, Ahmed Idbaih, Blandine Boisselier, Naïma Habbita, Marta Rossetto, Alice Laurenge, Aurélie Bruno, Anne Jouvet, Marc Polivka, Clovis Adam, Dominique Figarella-Branger, Catherine Miquel, Anne Vital, Hervé Ghesquières, Rémy Gressin, Vincent Delwail, Luc Taillandier, Olivier Chinot, Pierre Soubeyran, Emmanuel Gyan, Sylvain Choquet, Caroline Houillier, Carole Soussain, Marie-Laure Tanguy, Yannick Marie, Karima Mokhtari and Khê Hoang-Xuan
Alberto Gonzalez-Aguilar
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ahmed Idbaih
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Blandine Boisselier
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Naïma Habbita
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marta Rossetto
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alice Laurenge
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aurélie Bruno
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne Jouvet
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Polivka
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clovis Adam
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominique Figarella-Branger
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine Miquel
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne Vital
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hervé Ghesquières
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rémy Gressin
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincent Delwail
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luc Taillandier
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Olivier Chinot
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Soubeyran
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emmanuel Gyan
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sylvain Choquet
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline Houillier
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carole Soussain
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marie-Laure Tanguy
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yannick Marie
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karima Mokhtari
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Khê Hoang-Xuan
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
Authors' Affiliations: 1Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; 2Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM) UMR-S975, INSERM U 975, CNRS, UMR 7225; 3Centre Hospitalier Universitaire Lariboisière, Service d'Anatomopathologie; 4Hôpital St Anne, Service d'Anatomopathologie, Paris; 5Hospices Civils de Lyon, Hôpital Neurologique, Bron and Université Lyon 1, UMR-S842, INSERM U842; 6Centre Léon Bérard, Département d'Hématologie, Lyon; 7Centre Hospitalier Universitaire Bicêtre, Service d'Anatomopathologie, Bicêtre; 8Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille; INSERM U911, CRO2, Université de la Méditerranée, Marseille; 9Centre Hospitalier Universitaire Bordeaux, Service de Pathologie; 10Institut Bergonié, Service d'Hématologie, Bordeaux; 11Centre Hospitalier Universitaire de Grenoble, INSERM, U823, Université Joseph Fourier–Grenoble1, Institut Albert Bonniot, Grenoble; 12Centre Hospitalier Universitaire de Poitiers, Service d'Hématologie, Poitiers; 13Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy; 14Centre Hospitalier Universitaire de Tours, Service d'Hématologie et Thérapie Cellulaire, CIC, Inserm U202, Tours; 15Hôpital René Huguenin, Institut Curie, Service d'Hématologie St Cloud, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-12-0845 Published October 2012
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose: Our objective was to identify the genetic changes involved in primary central nervous system lymphoma (PCNSL) oncogenesis and evaluate their clinical relevance.

Experimental Design: We investigated a series of 29 newly diagnosed, HIV-negative, PCNSL patients using high-resolution single-nucleotide polymorphism (SNP) arrays (n = 29) and whole-exome sequencing (n = 4) approaches. Recurrent homozygous deletions and somatic gene mutations found were validated by quantitative real-time PCR and Sanger sequencing, respectively. Molecular results were correlated with prognosis.

Results: All PCNSLs were diffuse large B-cell lymphomas, and the patients received chemotherapy without radiotherapy as initial treatment. The SNP analysis revealed recurrent large and focal chromosome imbalances that target candidate genes in PCNSL oncogenesis. The most frequent genomic abnormalities were (i) 6p21.32 loss (HLA locus), (ii) 6q loss, (iii) CDKN2A homozygous deletions, (iv) 12q12-q22, and (v) chromosome 7q21 and 7q31 gains. Homozygous deletions of PRMD1, TOX, and DOCK5 and the amplification of HDAC9 were also detected. Sequencing of matched tumor and blood DNA samples identified novel somatic mutations in MYD88 and TBL1XR1 in 38% and 14% of the cases, respectively. The correlation of genetic abnormalities with clinical outcomes using multivariate analysis showed that 6q22 loss (P = 0.006 and P = 0.01) and CDKN2A homozygous deletion (P = 0.02 and P = 0.01) were significantly associated with shorter progression-free survival and overall survival.

Conclusions: Our study provides new insights into the molecular tumorigenesis of PCNSL and identifies novel genetic alterations in this disease, especially MYD88 and TBL1XR1 mutations activating the NF-κB signaling pathway, which may be promising targets for future therapeutic strategies. Clin Cancer Res; 18(19); 5203–11. ©2012 AACR.

Translational Relevance

Biology of primary central nervous system lymphoma (PCNSL) is poorly understood because of the rarity of the disease and the scare availability of biopsy-based tumor tissue. Better knowledge of PCNSL genomic landscape would contribute to improve the management of this tumor. To this end, we conducted a comprehensive genome wide DNA profiling on the basis of single-nucleotide polymorphism–based microarray and used for the first time in PCNSL a whole-exome sequencing approach. Recurrent alterations were identified, including MYD88 and TBL1XR1 mutations, which represent novel potential promising targets in PCNSL for future treatments, as they both might activate the NF-κB signaling pathway. Interestingly, other alterations, that is, CDKN2A homozygous deletion and chromosome 6q22 loss, were correlated through multivariate analysis with poor outcome and warrant to be evaluated as prognostic biomarkers in prospective trials. Our study provides new insights into PCNSL pathogenesis and support further investigations with important clinical relevance.

Introduction

Primary central nervous system lymphomas (PCNSL) are extranodal non-Hodgkin lymphomas that arise within the brain or the eyes and account for approximately 3% of all primary brain tumors. In immunocompetent patients, the vast majority of PCNSLs (90%) are classified as diffuse large B-cell lymphomas (DLBCL) according to the World Health Organization (WHO) criteria (1). In addition, they are Epstein–Barr virus negative, in contrast with the PCNSLs observed in immunocompromised patients. The standard initial treatment relies on high-dose methotrexate (MTX)–based polychemotherapy with or without whole-brain radiotherapy (2). Little is known about the molecular pathogenesis of PCNSL. This is probably related to the lack of biologic material to study; indeed, most PCNSL samples are obtained from stereotactic biopsies. The PCNSL patients have a median overall survival (OS) ranging from 2 to 5 years, and it is still unclear whether their less favorable outcomes compared with those of patients with systemic DLBCL are linked to the organ-specific microenvironment of the lymphoma or whether they reflect a specific, aggressive, intrinsic biologic behavior. Systemic DLBCLs have been classified into 2 main prognostic subgroups according to their gene expression profile: “germinal center B-cell-like type” (GC) and the “activated B-cell-like type” (ABC; ref. 3). We and others have previously shown that PCNSL can be distinguished from systemic DLBCL in that it expresses both GC-like and ABC-like features, suggesting that it represents an overlapping histogenetic time point of B-cell differentiation that corresponds to an early post-GC stage (4, 5). Several genes and mRNAs have been reported to be highly differentially expressed between PCNSL and systemic DLBCL (6–8). However, it remains unknown whether these expression signatures represent molecular pathways that are specific to PCNSL (9).

Studies searching for genomic alterations in PCNSL are scarce. Recently, high-resolution genomic arrays and whole-genome sequencing have been shown to be efficient approaches to achieve comprehensive analyses of chromosome imbalances and gene mutations in solid cancers and hematologic malignancies, including systemic DLBCLs (10–12). These techniques were used to investigate a series of 29 PCNSL samples in this study. Several chromosome regions and genes were identified as being frequently abnormal, suggesting that they may play important roles in PCNSL tumorigenesis. The predictive and prognostic values of these variants were analyzed.

Materials and Methods

Patients and tumor samples

A total of 29 paired PCNSL frozen tumor and blood samples were obtained from 10 institutions. All the tumors were obtained in HIV-negative patients at diagnosis and classified as CD20+DLBCLs on the basis of morphology and immunohistochemistry according to the WHO classification (1). Clinical records were reviewed retrospectively; all the patients were newly diagnosed and systemic lymphoma was excluded by extensive work-up including at the minimum a body–computer tomography (CT) scan or a positron emission tomography (PET)–scan and a bone marrow biopsy. All the patients received chemotherapy without whole brain radiotherapy (WBRT) as initial treatment according to Anocef (Association des Neuroncologues d'Expression Française) protocols. Clinical data and molecular genetic results were analyzed retrospectively. Written consent of patients was obtained for sample collection and genetic analysis in the setting of research work.

DNA isolation and SNP array

Tumor DNA from cryopreserved samples was extracted using the DNA Midi Kit (QIAGEN) according to the manufacturer's instructions. The DNA was extracted from blood sample by conventional saline method. The DNA was quantified using the NanoVue spectrophotometer and qualified on gel agarosis. Tumor DNA was run upon Infinium Illumina Human 610-Quad SNP array (Illumina). Array processing, using 250 ng of tumor DNA, was outsourced to Integragen. Extracted data using Feature Extraction software were imported and analyzed using Nexus 5.1 (Biodiscovery).

Quantitative real-time PCR

Homozygous deletions were validated using TaqMan Copy Number Assay. Primers and a FAM-labeled minor groove binder TaqMan probe testing CDKN2A (Hs02738179_cn), PRDM1 (Hs02133894_cn), DOCK5 (Hs01042688_cn), TOX (Hs01944817_cn), and primers and VIC-labeled minor groove binder TaqMan probe testing reference gene RNASE P (ref.: 4403326, Applied Biosystems) were used to assess copy number status. All assays were carried in duplicate on LightCycler480 Multiwell Plate 96. Gene copy number status was determined using the method of 2−ΔΔCt.

Targeted-exome sequencing

Genomic DNA was captured using Agilent in-solution enrichment methodology (SureSelect Human All Exon Kits Version 2, Agilent) with their biotinylated oligonucleotides probes library (Human All Exon v2-46 Mb, Agilent), followed by paired-end 75b massively parallel sequencing on Illumina GAIIX (13). Sequence capture, enrichment, and elution were conducted according to manufacturer's instructions and protocols (SureSelect, Agilent). Each eluted-enriched DNA sample was sequenced on an Illumina GAIIX as paired-end 75b reads. Image analysis and base calling was conducted using Illumina Real Time Analysis Pipeline version 1.8 with default parameters. The bioinformatics analysis of sequencing data was on the basis of the Illumina pipeline (CASAVA1.7). CASAVA conducts alignment of a sequencing run to a reference genome (hg19), calls the SNPs on the basis of the allele calls and read depth, and detects variants (SNPs and Indels). The alignment algorithm used is ELANDv2 (conducts multiseed and gapped alignments). Only the positions included in the bait coordinates are conserved. Genetics variation annotation was conducted on the basis of in-house pipeline, consisting on genes annotation (RefSeq), known polymorphisms (dbSNP 131, 1,000 Genome) followed by a mutation characterization. For each position, the exomic frequencies were determined from all the exomes already sequenced at Integragen, and the exome results provided by HapMap. We also realize a coverage/depth statistical analysis for each bait.

Sanger sequencing

Primers and conditions for PCR used for MYD88, PIM1, and TBL1XR1 sequencing are available upon request. The PCR products were purified using NucleoFast PCR (Macherey Nagel). The Big-Dye Terminator Cycle sequencing Ready Reaction (PerkinElmer) was used for the sequencing reactions. Both forward and reverse chains were analyzed on ABI Prism 3730 Genetic Analyzer (Perkin Elmer).

Statistical analysis

Progression-free survival (PFS) and OS were calculated from the first day of treatment. The survival distributions were estimated by the method of Kaplan–Meier. The Log-Rank test was used in univariate analysis to compare PFS and OS across groups. The Cox proportional hazards model was used to estimate univariate HRs and 95% CIs presented in Table 4. Variables that were found to be significant in univariate analysis with the Log-Rank test were included in a multivariate stepwise Cox regression model. Because age and Karnofsky performance status are known to be important prognostic factors, they were also introduced in the model, although they were not significant in univariate analysis. All tests were 2-sided. P values less than 0.05 were considered statistically significant. All analyses were conducted with the SAS software version 9.2 (SAS Institute).

Results

Chromosome imbalances

Nine chromosome regions were recurrently imbalanced in at least 20% of the cases (Fig. 1 and Table 1). The most frequent deletion was 6p21.32 (79%) corresponding to the HLA locus. Three minimal common regions of deletion were identified on chromosome arm 6q: (i) 6q14.1-q16.3 (27%), (ii) 6q16.3 (37%), and (iii) 6q21.1-q25 (34%). Chromosome 12q12-q22 (27%), 7q21.11-q21.12 (20%), and 7q31.1-q31.2 (20%) were the most frequent material gained.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Overview of the genomic aberrations found in 29 PCNSL using SNP. Bars at the right of the chromosomes, gains and bars at the left, losses.

View this table:
  • View inline
  • View popup
Table 1.

Most frequent chromosome imbalances in PCNSL (candidate genes are listed in all regions smaller than 5 Mb)

Homozygous gene deletion and gene amplification

CDKN2A was by far the most frequently homozygously deleted gene (13 cases, 45%). Other genes were homozygously deleted at a lower rate (Table 2): DOCK5 (3 cases), PRDM1 (2 cases), TOX (1 case). High-level amplifications involved the 7p21.1 region targeting HDAC9 (1 case). CDKN2A, TOX, PRMD1, and DOCK5 homozygous deletion were validated using qPCR.

View this table:
  • View inline
  • View popup
Table 2.

Homozygous deletions (HD) and high copy gains (HCG) found in 29 PCNSLs

Somatic gene mutations

High quality and large amount (3 μg) of DNA were requested for the whole-exome sequencing experiments. From the cohort of 29 samples, 4 tumor DNA and 4 matched blood DNA fulfilling these criteria were selected for targeted-exome capture. Whole-exome sequencing revealed 33,628 base substitutions involving 8,991 genes and 3,467 insertions and deletions involving 2,683 genes in tumor DNA. SNP reported in the Hapmap, 1,000 genomes and ncbi refseq databases were removed. Comparison of tumor and matched normal lymphocyte genome showed 1,678 somatic mutations involving 1,424 genes and 71 small insertions and deletions involving 65 genes. We focused on somatic mutations changing protein-coding sequences and found in at least 2 of 4 tumors investigated. We identified 12 recurrent nonsynonymous mutations and 2 insertions involving 7 and 2 genes, respectively. Finally after Sanger sequencing, 5 somatic mutations in 3 genes (MYD88, TBL1XR1, and PIM1) were validated. To specify the incidence of these gene mutations, we screened the 29 frozen sample DNAs of the series by standard Sanger sequencing. Two additional mutations in TBL1XR1 were identified in 2 cases. Altogether, MYD88, TBL1XR1, and PIM1 showed nonsynonymous mutations in 38%, 14%, and 3% of cases, respectively (Table 3).

View this table:
  • View inline
  • View popup
Table 3.

Genes recurrently mutated in PCNSL

Correlation between molecular genetic alterations and patient outcome

The cohort comprised 15 men and 14 women, median age was 65 years (range: 23 to 81) and the median Karnofsky performance status (KPS) was 70 (range: 40 to 100). Seventeen patients had multiple enhancing lesions on MRI. All but 1 received high dose MTX–based polychemotherapy without WBRT as initial treatment: MTX 3 g/m2–lomustine–procarbazine ± prophylactic intrathecal chemotherapy (n = 11); MTX 3.5 g/m2-procarbazine–vincristine–cytarabine (n = 8); MTX 3.5 g/m2–temozolomide (n = 9), temozolomide (n = 1). At the time of analysis, the median follow-up was 79 months. The 3-year PFS and OS were 40% (95% CI, 22 to 58) and 61% (95% CI, 41 to 76), respectively. Salvage treatments in the 22 relapsing or refractory patients were: chemotherapy alone (n = 12), WBRT with or without chemotherapy (n = 5), palliative care (n = 5). Age (<60 vs. ≥60 years), KPS (<70 vs. ≥70), number of enhancing lesions on MRI (single vs. multiple), initial chemotherapy regimen (with or without cytarabine), and the most frequent or relevant genomic alterations were investigated for prognostic significance: 6p21.32 loss (HLA-DRB5 locus), 6q22 loss; 12q12-22 gain, CDKN2A homozygous deletions, MYD88 and TBL1XR1 mutations. Chromosome 6q loss is complex in our series with 3 minimal common regions of deletions. To assess its previously reported adverse prognostic significance on survival (14), we have tested the chr6:128,591,541-128,845,913 region [including the RP11-151E20 and CTD-2378A7 BACs (14)]. In univariate analysis, only 6q22 loss (P = 0.006; P = 0.006) and CDKN2A homozygous deletion (P = 0.01; P = 0.004) were associated with significantly shorter PFS and OS. In multivariate analysis, age > 60 years (P = 0.009 and P = 0.03), 6q22 loss (P = 0.006 and P = 0.01), and CDKN2A deletion (P = 0.02 and P = 0.01) were significantly associated with poor PFS and OS, respectively (Table 4 and Fig. 2A–D).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Kaplan–Meier curves according with: chromosome 6q22 status (loss: solid line; retained: dotted line) for (A) PFS (P = 0.006). B, OS (P = 0.006), and CDKN2A status (homozygous deletion: solid line; no homozygous deletion: dotted line) for (C) PFS (P = 0.01) and (D) OS (P = 0.004).

View this table:
  • View inline
  • View popup
Table 4.

Univariate and multivariate analysis for PFS and OS

Discussion

To our knowledge, the present study is the most comprehensive analysis of genetic alterations in PCNSL to date, using a whole-exome sequencing approach and SNP. We reported novel recurrent somatic gene mutations of MYD88 and TBL1XR1 in PCNSL. We identified focal genetic abnormalities with new putative candidate genes in PCNSL oncogenesis. We also confirmed and extended reports from previous studies that chromosome 6p21.32 deletion, chromosome 6q loss, and CDKN2A homozygous deletion are frequent genetic changes in PCNSL. Finally, the correlation of genetic profiles with clinical outcomes through multivariate analysis showed that 6q22 and CDKN2A deletions were associated with a significant unfavorable impact on prognostic both in term of PFS and OS.

Whole-genome sequencing strategies have successfully identified critical genes in the pathogenesis of several cancers, including hematologic malignancies (12, 15). However, this approach has yet not been used to screen PCNSL. We detected MYD88 mutations in 38% of PCNSL samples, and MYD88 represents the most frequently mutated gene in PCNSL that is currently known. MYD88 encodes a signaling adaptor protein that activates the NF-κB pathway after stimulation of the Toll-like receptor and the IL1 and IL18 receptors. Notably, all PCNSLs harbored the same mutation, L265P. Recently, Ngo and colleagues (16) reported the same L265P mutation in MYD88 as a hot spot in 29% of systemic DLBCLs, although it occurred exclusively in the “activated B-cell” type (ABC). MYD88 mutations have also been observed at lower rates in other hematologic malignancies, such as mucosa-associated lymphoid tissue lymphomas and chronic lymphocytic leukemia (15, 16). The L265P mutation resides in the Toll/IL-1 receptor (TIR) domain and would induce a gain of function by increasing NF-κB activity and enhancing JAK-STAT3 (Janus kinase-signal transducer and activator of transcription 3) signaling and interferon-β production. We also found recurrent, potentially functionally relevant, nonsynonymous somatic mutations in TBL1XR1 in 14% of cases. TBL1XR1 encodes transducin-β–like 1 X-linked receptor 1, which is a transcriptional regulator that interacts with nuclear hormone receptor corepressors (17) and may play a regulatory role in the NF-κB pathway and Wnt-mediated transcription. Braggio and colleagues (18) recently described a focal deletion on the 3q26.32 region in 3 of 7 PCNSL samples investigated. Interestingly, this region encompasses the TBL1XR1 locus. However, to our knowledge, no sequence mutations in this gene have yet to be described in PCNSL or in systemic DLBCLs (12). Moreover, 1 tumor of our series displayed biallelic inactivation of TBL1XR1 with a somatic mutation of 1 allele and a deletion of the other allele suggesting that TBL1XR1 may be inactivated as a tumor suppressor gene. Recurrent deletions and mutations of TBL1XR1 have also been reported in acute lymphoblastic leukemias (19, 20). However, the precise mechanisms by which TBL1XR1 mutations contribute to tumorigenesis remain unclear. Indeed, TBL1XR1 amplification has been shown in breast cancer, and its inactivation reduced tumor cell invasion in in vitro and in vivo knockdown experiments in malignant mammary cell lines (21). These observations might suggest contradictory tumor-specific roles for TBL1XR1 mutations in oncogenesis. PIM-1, which is located on 6p21.2, encodes a serine/threonine kinase that may contribute to tumor progression in many cancers by promoting early transformation, cell proliferation and potentially angiogenesis (22). PIM1 is a target proto-oncogene that is reported in DLBCLs with an aberrant somatic hypermutation and has been proposed as an important component of the transformation process (12). A previous study reported mutations in PIM1 in 5 of 10 cases of PCNSL (23). In contrast, we found somatic mutations in only 2% of cases in our series. Our identification of recurrent somatic mutations in MYD88 and TBL1XR1 have extended the list of genes, such as PRDM1 (24) and CARD11 (25), that when mutated contribute to the constitutive activation of NF-κB, emphasizing the importance of this key signaling pathway in PCNSL. Hence, patients with PCNSL may be likely to benefit from treatments that inhibit the MYD88 signaling pathway, especially those with tumors bearing the L265P mutation.

High-resolution genomic arrays (aCGH and SNP) are powerful tools for the comprehensive analysis of chromosome imbalances. To date, only 3 genomic array studies of PCNSL have been published and were limited to 7, 12, and 19 cases (refs. 18, 26, 27; Supplementary Table S1). Our study confirmed the main imbalanced region previously reported and identified novel altered region and candidate targeted genes. The most frequent changes were losses at 6p21.3 and 6q and gains at 12q12.22. The recurrent loss of chromosome 6p21.32 involving the HLA locus was observed in 79% of cases. This feature seems specific to DLBCLs of immune-privileged sites, including PCNSL and testicular DLBCLs, and might represent a mechanism of immune escape from CD8+ and CD4+ cytotoxic T cells via the downregulation of HLA class II expression (28, 29). However, few studies have addressed its clinical significance. In systemic DLBCLs, 6p21.32 deletion has been reported in chemoresponsive tumors (30); on the other hand, the loss of MHC class II gene and protein expression have been correlated with poor prognosis (31). In this study, we found no significant correlation between the loss of 6p21.32 (HLA locus) and outcome. Another recurrent aberration in PCNSL was the loss of chromosome 6q (27% to 37%), which seems to occur at a higher rate than in systemic DLBCLs, where a lower frequency has been reported (32, 33). We found 3 distinct minimal common deletion regions (MCRs), 6q14.1-16.3, 6q16.3, and 6q21-25.1. Several MCRs have been reported in previous studies (18, 34, 35), suggesting a highly complex rearrangement of this chromosome, which likely involves more than one targeted gene. Altogether, up to 4 nonoverlapping MCRs have been reported to date. Several candidate genes, such as PRDM1 and PTPRK, have been identified in this region. PRDM1, located on 6q21, encodes a positive regulatory domain I protein with a Zinc Finger domain (BLIMP1 protein), which acts as a tumor suppressor (36). PRDM1 inactivation would contribute to lymphomagenesis by blocking B-cell differentiation into antibody-secreting plasma cells. PRMD1 mutations have been reported in 24% of systemic DLBCLs (37, 38) and 10% of PCNSLs (4 PRDM1 mutations out of a total of 40 PCNSL samples screened in 2 studies; refs. 24, 26). We observed recurrent homozygous deletions of PRDM1, which have not been reported elsewhere to date, in 2 cases. PTPRK, located on 6q22-23 within a MCR refined by LOH mapping, encodes a tyrosine phosphatase protein that is involved in the regulation of cell contact and adhesion (39). A loss of PTPRK protein expression was observed in most of the PCNSLs tested. Further studies to identify gene mutations and/or rearrangements are needed to ascertain the involvement of PTPRK in PCNSL tumorigenesis. Interestingly, the loss of the PTPRK locus on 6q22 has been associated with a poor outcome in PCNSL patients in 2 previous studies. However, patient clinical characteristics were not available (39) or treatments not detailed (14, 39). In the present study, we observed a significantly shorter PFS and OS in PCNSL patients with 6q22 loss in multivariate analysis. The most frequent chromosome gains in our series were 12q12-22, 7q21.11-q21.12, and 7q31.1-q31.2. The minimal regions of interest on both 12q and 7q should be refined further; they overlap with loci previously reported to be gained in PCNSL and encompass many potential candidate genes (26, 29, 34).

Genomic array techniques detecting also small genomic alterations, such as gene amplifications and homozygous deletions, may identify target genes more accurately. In accordance with previous studies, CDKN2A was the most frequently deleted gene in PCNSL (45% of cases; refs. 18, 26, 27, 40). Epigenetic silencing has also been reported (41). CDKN2A is a well-known tumor suppressor gene, located on 9p21.3, which encodes a cyclin-dependent kinase inhibitor (p16) that regulates cell-cycle progression. Inactivation of CDKN2A has been reported in many malignancies. To our knowledge, the correlation between CDKN2A inactivation and outcome has been has been suggested in only 1 small study that included 14 patients (42). Our multivariate analyses confirm the negative prognostic impact of the CDKN2A genotype on both PFS and OS in PCNSL. Several other genes are of interest because they were found to be targeted by homozygous deletions (TOX, PRDM1, and DOCK5) or by amplification (HDAC9) in PCNSL. TOX is located on 8q12.1 and encodes a DNA-binding factor that is required for the development of many cell lineages in the immune system, such as CD4(+) T cells, natural killer T cells, and regulatory T cells (43, 44) and may contribute to the observed arrest of B-cell differentiation in PCNSL. Deletions of TOX in one previous case of PCNSL (18) and in 4% of childhood acute lymphatic leukemias have been reported (45). HDAC9, which is a unique gene located in the 7p21.1 amplified region, encodes a member of the class IIa histone deacetylase (HDAC) enzyme family, which is involved in chromatin condensation and transcriptional repression (46). HDAC9 gain has been described in squamous cell cervical carcinomas (47), and higher HDAC9 expression has been associated with poor prognosis in childhood acute lymphatic leukemias (48). DOCK5, which maps to 8p21.2-p21.3, encodes the dedicator of cytokinesis 5 protein and is recurrently deleted and underexpressed in osteosarcoma (49, 50). All of these candidate genes should be further analyzed to explore their potential and specific contributions to PCNSL pathogenesis.

In conclusion, although our study is retrospective and includes a limited number of patients, it expands our knowledge of the molecular genetic heterogeneity of PCNSL. It highlights novel genetic events with potential clinical and biologic relevance, identifies prognostic biomarkers, and supports further investigations in larger prospective studies.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors' Contributions

Conception and design: A. Gonzalez-Aguilar, A. Idbaih, A. Laurenge, K. Hoang-Xuan

Development of methodology: A. Gonzalez-Aguilar, A. Idbaih, K. Hoang-Xuan

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B. Boisselier, N. Habbita, M. Rossetto, A. Laurenge, A. Jouvet, M. Polivka, C. Adam, D. Figarella-Branger, A. Vital, R. Gressin, V. Delwail, L. Taillandier, O. Chinot, P. Soubeyran, E. Gyan, S. Choquet, C. Houillier, C. Soussain, Y. Marie, K. Mokhtari, K. Hoang-Xuan

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A. Gonzalez-Aguilar, A. Idbaih, B. Boisselier, M. Rossetto, A. Bruno, M.-L. Tanguy, Y. Marie, K. Hoang-Xuan

Writing, review, and/or revision of the manuscript: A. Gonzalez-Aguilar, A. Idbaih, A. Bruno, D. Figarella-Branger, C. Miquel, A. Vital, H. Ghesquieres, R. Gressin, L. Taillandier, E. Gyan, C. Soussain, M.-L. Tanguy, K. Hoang-Xuan

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Gonzalez-Aguilar, D. Figarella-Branger, C. Miquel, O. Chinot, K. Hoang-Xuan

Study supervision: A. Idbaih, K. Hoang-Xuan

Grant Support

A. Gonzalez-Aguilar, B. Boisselier, N. Habbita, M. Rossetto, and A. Bruno are recipients of grants from the ARTC (Association Pour la Recherche Contre les Tumeurs Cérébrales).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Acknowledgments

This work is part of the National Program Cartes d'Identité des Tumeurs (CIT) http://cit.ligue-cancer.net/ funded and developed by the Ligue Nationale Contre le Cancer (France). This study benefited from the LOC study group network (Réseau National de Centres Experts des Lymphomes Primitifs du SNC, INCa).

Footnotes

  • Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

  • Received March 13, 2012.
  • Revision received June 7, 2012.
  • Accepted June 29, 2012.
  • ©2012 American Association for Cancer Research.

References

  1. 1.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD,
    4. Cavenee WK
    1. Deckert M,
    2. Paulus W
    . Malignant lymphomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK , editors. WHO classification of tumors pathology & genetics of tumours of the nervous system. Lyon: IRAC; 2007. p. 188–92.
  2. 2.↵
    1. Deckert M,
    2. Engert A,
    3. Brück W,
    4. Ferreri AJM,
    5. Finke J,
    6. Illerhaus G,
    7. et al.
    Modern concepts in the biology, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia 2011;25:1797–807 (doi: 10.1038/leu.2011.169).
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Alizadeh AA,
    2. Eisen MB,
    3. Davis RE,
    4. Ma C,
    5. Lossos IS,
    6. Rosenwald A,
    7. et al.
    Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503–11.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Camilleri-Broët S,
    2. Crinière E,
    3. Broët P,
    4. Delwail V,
    5. Mokhtari K,
    6. Moreau A,
    7. et al.
    A uniform activated B-cell-like immunophenotype might explain the poor prognosis of primary central nervous system lymhpomas: analysis of 83 cases. Blood 2006;107:190–6.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Montesinos-Rongen M,
    2. Brunn A,
    3. Bentink S,
    4. Basso K,
    5. Lim WK,
    6. Klapper W,
    7. et al.
    Gene expression profiling suggests primary central nervous system lymphomas to be derived from a late germinal center B cell. Leukemia 2008;22:400–5.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Rubenstein JL,
    2. Fridlyand J,
    3. Shen A,
    4. Aldape K,
    5. Ginzinger D,
    6. Batchelor T,
    7. et al.
    Gene expression and angiotropism in primary CNS lymphoma. Blood 2006;107:3716–23.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Tun HW,
    2. Personett D,
    3. Baskerville KA,
    4. Menke DM,
    5. Jaeckle KA,
    6. Kreinest P,
    7. et al.
    Pathway analysis of primary central nervous system lymphoma. Blood 2008;111:3200–10.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Fischer L,
    2. Hummel M,
    3. Korfel A,
    4. Lenze D,
    5. Joehrens K,
    6. Thiel E
    . Differential micro-RNA expression in primary CNS and nodal diffuse large B-cell lymphomas. Neuro Oncol 2011;13:1090–8.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Montesinos-Rongen M,
    2. Siebert R,
    3. Deckert M
    . Primary lymphoma of the central nervous system: just DLBCL or not? Blood 2009;113:7–10.
    OpenUrlFREE Full Text
  10. 10.↵
    1. Chen W,
    2. Houldsworth J,
    3. Olshen AB,
    4. Nanjangud G,
    5. Chaganti S,
    6. Venkatraman ES,
    7. et al.
    aCGH reveals genomic copy number changes associated with outcome in diffuse large B cell lymphomas. Blood 2006;107:2477–85.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Lenz G,
    2. Wright GW,
    3. Emre NC,
    4. Kohlhammer H,
    5. Dave SS,
    6. Davis RE,
    7. et al.
    Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 2008;105:13520–5.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Morin RD,
    2. Mendez-Lago M,
    3. Mungall AJ,
    4. Goya R,
    5. Mungall KL,
    6. Corbett RD,
    7. et al.
    Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011;476:298–303.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Gnirke A,
    2. Melnikov A,
    3. Maguire J,
    4. Rogov P,
    5. Le Proust EM,
    6. Brockman W,
    7. et al.
    Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009;27:182–9.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Cady FM,
    2. O'Neill BP,
    3. Law ME,
    4. Decker PA,
    5. Kurtz DM,
    6. Giannini C,
    7. et al.
    Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J Clin Oncol 2008;26:4814–9.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Puente XS,
    2. Pinyol M,
    3. Quesada V,
    4. Conde L,
    5. Ordonez GR,
    6. Villamor N,
    7. et al.
    Whole genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011;475:101–5.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Ngo VN,
    2. Young RM,
    3. Schmitz R,
    4. Jhavar S,
    5. Xiao W,
    6. Lim KH,
    7. et al.
    Oncogenically active MYD88 mutations in human lymphoma. Nature 2011;470:115–9.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Zhang XM,
    2. Chang Q,
    3. Zeng L,
    4. Gu J,
    5. Brown S,
    6. Basch RS
    . TBLR1 regulates the expression of nuclear hormone receptor co-repressors. BMC Cell Biol 2006;7:1–17.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Braggio E,
    2. McPhail ER,
    3. Macon W,
    4. Lopes MB,
    5. Schiff D,
    6. Law M,
    7. et al.
    Primary central nervous system lymphomas. A validation study of array-based comparative genomic hybridization in formalin-fixed paraffin-embedded tumor specimens. Clin Cancer Res 2011;17:4245–53.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Parker H,
    2. An Q,
    3. Barber K,
    4. Case M,
    5. Davies T,
    6. Konn Z,
    7. et al.
    The complex genomic profile of ETV6-RUNX1 positive acule lymphoblastic leukemia highlights a recurrent deletion of TBL1XR1. Gene Chromosomes Cancer 2008;47:1118–25.
    OpenUrlCrossRef
  20. 20.↵
    1. Zhang J,
    2. Mullighan CG,
    3. Harvey RC,
    4. Wu G,
    5. Chen X,
    6. Edmonson M,
    7. et al.
    Key pathways are frequently mutated in high risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2011;118:3080–7.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Kadota M,
    2. Sato M,
    3. Duncan B,
    4. Ooshima A,
    5. Yang HH,
    6. Diaz-Meyer N,
    7. et al.
    Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res 2009;69:7357–65.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Shah N,
    2. Pang B,
    3. Yeoh KG,
    4. Thornd S,
    5. Chena CS,
    6. Lillye MB
    . Potential roles for the PIM1 kinase in human cancer—a molecular and therapeutic appraisal. Eur J Cancer 2008;44:2144–51.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Montesinos-Rongen M,
    2. Van Roost D,
    3. Schaller C,
    4. Wiestler OD,
    5. Deckert M
    . Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 2004;103:1869–75.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Courts C,
    2. Montesinos-Rongen M,
    3. Brunn A,
    4. Bug S,
    5. Siemer D,
    6. Hans V,
    7. et al.
    Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma. J Neuropathol Exp Neurol 2008;67:720–7.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Montesinos-Rongen M,
    2. Schmitz R,
    3. Brunn A,
    4. Gesk S,
    5. Richter J,
    6. Hong K,
    7. et al.
    Mutations of CARD11 but not TNFAIP3 may activate the NF-jB pathway in primary CNS lymphoma. Acta Neuropathol 2010;120:529–35.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Schwindt H,
    2. Vater I,
    3. Kreuz M,
    4. Brunn A,
    5. Montesinos-Rongen M,
    6. Richter J,
    7. et al.
    Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia 2009;23:1875–84.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Sung CO,
    2. Kim SC,
    3. Karnan S,
    4. Karube K,
    5. Shin HJ,
    6. Nam DH,
    7. et al.
    Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood 2011;117:1291–300.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Riemersma SA,
    2. Jordanova ES,
    3. Schop RF,
    4. Philippo K,
    5. Looijenga LH,
    6. Schuring E,
    7. et al.
    Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood 2000;96:3569–77.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Booman M,
    2. Szuhai K,
    3. Rosenwald A,
    4. Hartmann E,
    5. Kluin-Nelemans H,
    6. de Jong D,
    7. et al.
    Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol 2008;216:209–17.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Kreisel F,
    2. Kulkarni S,
    3. Kerns RT,
    4. Hassan A,
    5. Deshmukh H,
    6. Nagarajan R,
    7. et al.
    High resolution array comparative genomic hybridization identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy. Cancer Genet 2011;204:129–37.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Rimsza LM,
    2. Roberts RA,
    3. Miller TP,
    4. Unger JM,
    5. LeBlanc M,
    6. Braziel RM,
    7. et al.
    Loss of MHC class II gene and protein expression in diffuse large B-cell from the leukemia and lymphoma molecular profiling project patient survival regardless of other prognostic factors: a follow-up study lymphoma is related to decreased tumor immunosurveillance and poor. Blood 2004;103:4251–8.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Bea S,
    2. Colomo L,
    3. Lopez-Guillermo A,
    4. Slaverria I,
    5. Puig X,
    6. Pinyol M,
    7. et al.
    Clinicopathologic significance and prognostic value of chromosomal imbalances in diffuse large B cell lymphomas. J Clin Oncol 2004;22:3498–506.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Robledo C,
    2. Garcıa JL,
    3. Caballero D,
    4. Conde E,
    5. Arranz R,
    6. Flores T,
    7. et al.
    Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas. Cancer 2009;115:3728–37.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Weber T,
    2. Weber RG,
    3. Kaulich K,
    4. Actor B,
    5. Meyer-Puttlitz B,
    6. Lampel S,
    7. et al.
    Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B-cell type. Brain Pathol 2000;10:73–84.
    OpenUrlPubMed
  35. 35.↵
    1. Boonstra R,
    2. Koning A,
    3. Mastik M,
    4. van den Berg A,
    5. Poppema S
    . Analysis of chromosomal copy number changes and oncoprotein expression in primary central nervous system lymphomas: frequent loss of chromosome arm 6q. Virchows Arch 2003;443:164–9.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Calado DP,
    2. Zhang B,
    3. Srinivasan L,
    4. Sasaki Y,
    5. Seagal J,
    6. Unitt C,
    7. et al.
    Constitutive canonical NF-kB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 2010;18:580–9.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Pasqualucci L,
    2. Compagno M,
    3. Houldsworth J,
    4. Monti S,
    5. Grunn A,
    6. Nandula SV,
    7. et al.
    Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 2006;203:311–7.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Tam W,
    2. Gomez M,
    3. Chadburn A,
    4. Lee JW,
    5. Chan WC,
    6. Knowles DM
    . Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006;107:4090–100.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Nakamura M,
    2. Kishi M,
    3. Sakaki T,
    4. Hashimoto H,
    5. Nakase H,
    6. Shimada K,
    7. et al.
    Novel tumor suppressor loci on 6q22-23 in primary central nervous system lymphomas. Cancer Res 2003;63:737–41.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Cobbers JM,
    2. Wolter M,
    3. Reifenberger J,
    4. Ring GU,
    5. Jessen F,
    6. An HX,
    7. et al.
    Frequent inactivation of CDKN2A and rare mutation of TP53 in PCNSL. Brain Pathol 1998;8:263–76.
    OpenUrlPubMed
  41. 41.↵
    1. Chu LC,
    2. Eberhart CG,
    3. Grossman SA,
    4. Herman JG
    . Epigenetic silencing of multiple genes in primary CNS lymphoma. Int J Cancer 2006;119:2487–91.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Hayashi Y,
    2. Iwato M,
    3. Arakawa Y,
    4. Fujisawa H,
    5. Thoma Y,
    6. Hasegawa M,
    7. et al.
    Homozygous deletion of INK4a/ARF genes and overexpression of bcl-2 in relation with poor prognosis in immunocompetent patients with primary central nervous system lymphoma of the diffuse large B-cell type. J Neurooncol 2001;55:51–8.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Aliahmad P,
    2. Kaye J
    . Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med 2008;205:245–56.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Aliahmad P,
    2. de la Torre B,
    3. Kaye J
    . Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 2010;10:945–52.
    OpenUrl
  45. 45.↵
    1. Bardet V,
    2. Couque N,
    3. Cattolico L,
    4. Hetet G,
    5. Devaux I,
    6. Duprat S,
    7. et al.
    Molecular analysis of nonrandom 8q12 deletions in acute lymphoblastic leukemia: identification of two candidate genes. Genes Chromosomes Cancer 2002;33:178–87.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Petrie K,
    2. Guidez F,
    3. Howell L,
    4. Healy L,
    5. Waxman S,
    6. Greaves M,
    7. et al.
    The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem 2003;278:16059–72.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Choi YW,
    2. Bae SM,
    3. Kim YM,
    4. Lee HN,
    5. Kim YW,
    6. Park TC,
    7. et al.
    Gene expression profiles in squamous cell cervical carcinoma using array based comparative genomic hybridization analysis. Int J Gynecol Cancer 2007;17:687–96.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Moreno DA,
    2. Scrideli CA,
    3. Abdala Cortez MA,
    4. De Paula Queiroz R,
    5. Valera ET,
    6. Da Silva Silveira V,
    7. et al.
    Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 2010;150:665–73.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Brazier H,
    2. Stephens S,
    3. Ory S,
    4. Fort P,
    5. Morrison N,
    6. Blangy A,
    7. et al.
    Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res 2006;21:1387–98.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Sadikovic B,
    2. Yoshimoto M,
    3. Chilton-MacNeill S,
    4. Thorner P,
    5. Squire JA,
    6. Zielenska M
    . Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet 2009;18:1962–75.
    OpenUrlAbstract/FREE Full Text
View Abstract
PreviousNext
Back to top
Clinical Cancer Research: 18 (19)
October 2012
Volume 18, Issue 19
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Recurrent Mutations of MYD88 and TBL1XR1 in Primary Central Nervous System Lymphomas
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Recurrent Mutations of MYD88 and TBL1XR1 in Primary Central Nervous System Lymphomas
Alberto Gonzalez-Aguilar, Ahmed Idbaih, Blandine Boisselier, Naïma Habbita, Marta Rossetto, Alice Laurenge, Aurélie Bruno, Anne Jouvet, Marc Polivka, Clovis Adam, Dominique Figarella-Branger, Catherine Miquel, Anne Vital, Hervé Ghesquières, Rémy Gressin, Vincent Delwail, Luc Taillandier, Olivier Chinot, Pierre Soubeyran, Emmanuel Gyan, Sylvain Choquet, Caroline Houillier, Carole Soussain, Marie-Laure Tanguy, Yannick Marie, Karima Mokhtari and Khê Hoang-Xuan
Clin Cancer Res October 1 2012 (18) (19) 5203-5211; DOI: 10.1158/1078-0432.CCR-12-0845

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Recurrent Mutations of MYD88 and TBL1XR1 in Primary Central Nervous System Lymphomas
Alberto Gonzalez-Aguilar, Ahmed Idbaih, Blandine Boisselier, Naïma Habbita, Marta Rossetto, Alice Laurenge, Aurélie Bruno, Anne Jouvet, Marc Polivka, Clovis Adam, Dominique Figarella-Branger, Catherine Miquel, Anne Vital, Hervé Ghesquières, Rémy Gressin, Vincent Delwail, Luc Taillandier, Olivier Chinot, Pierre Soubeyran, Emmanuel Gyan, Sylvain Choquet, Caroline Houillier, Carole Soussain, Marie-Laure Tanguy, Yannick Marie, Karima Mokhtari and Khê Hoang-Xuan
Clin Cancer Res October 1 2012 (18) (19) 5203-5211; DOI: 10.1158/1078-0432.CCR-12-0845
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Authors' Contributions
    • Grant Support
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Sirt7 Promotes Colorectal Cancer Tumorigenesis
  • Contact Guidance Controls T-cell Migration in PDAC
  • MET in Papillary RCC
Show more Human Cancer Biology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement