Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

A melanosomal membrane protein is a cell surface target for melanoma therapy.

Y Takechi, I Hara, C Naftzger, Y Xu and A N Houghton
Y Takechi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Hara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Naftzger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A N Houghton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Differentiation antigens on cancer cells are recognized by the immune system. A prototype set of these autoantigens in melanoma cells are the melanosomal glycoproteins, expressed in both melanomas and normal melanocytes. These are intracellular proteins that can be recognized by both antibodies and T lymphocytes. While one can understand how T cells can respond to intracellular proteins, based on cellular requirements for antigen processing and presentation, it is more difficult to understand how antibody responses to melanosomal proteins could lead to tumor rejection. We demonstrate that gp75 is expressed on the cell surface as well as intracellularly in human and mouse melanomas. The surface expression of gp75 can be augmented by IFN-gamma and during tumor growth in vivo. Surface expression of gp75 on mouse melanoma cells correlates with the ability of a monoclonal antibody (mAb) against gp75 to reject melanomas in syngeneic mice. Antibody-mediated rejection seems to require the Fc portion of the antibody, suggesting a role for Fc receptor-positive effector cells such as natural killer cells. However, although NK1.1(+) cells have been implicated in antibody-induced rejection in vivo, cell surface expression of gp75(+) on melanoma does not lead to susceptibility to antibody-dependent cellular cytotoxicity in vitro. The mAb to gp75 induced tumor rejection in mice carrying both scid and bg/bg traits, showing that neither thymus-dependent T cells nor natural killer cytotoxic activity was required in vivo. Long-term treatment of mice with mAb led to patchy depigmentation in the coat. In summary, an intracellular organellar protein can be expressed at the cell surface and provide an antigenic target for antibody therapy and autoimmunity.

PreviousNext
Back to top
November 1996
Volume 2, Issue 11
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A melanosomal membrane protein is a cell surface target for melanoma therapy.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A melanosomal membrane protein is a cell surface target for melanoma therapy.
Y Takechi, I Hara, C Naftzger, Y Xu and A N Houghton
Clin Cancer Res November 1 1996 (2) (11) 1837-1842;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A melanosomal membrane protein is a cell surface target for melanoma therapy.
Y Takechi, I Hara, C Naftzger, Y Xu and A N Houghton
Clin Cancer Res November 1 1996 (2) (11) 1837-1842;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement