Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Suramin increases p53 protein levels but does not activate the p53-dependent G1 checkpoint.

S P Howard, S J Park, L Hughes-Davies, C N Coleman and B D Price
S P Howard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S J Park
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Hughes-Davies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C N Coleman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B D Price
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published February 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Suramin is an antineoplastic agent which has a cytostatic effect on both normal and tumor-derived cells. We have investigated whether the induction of growth arrest by suramin requires the p53 protein, a tumor suppressor gene product involved in the initiation of growth arrest following DNA damage. Activation of the p53 protein by genotoxic agents causes increased p53 protein levels and p53-dependent transcription of the p21 gene. The p21 protein then inhibits cyclin-dependent kinases, initiating G1 arrest. Exposure of NIH-3T3 cells to suramin caused a rapid (1-2 h) increase in the level of p53-DNA-binding activity. Flow cytometric analysis indicated that suramin arrested NIH-3T3 cells in G0-G1. However, suramin did not increase the p53-dependent transcription of the p21 gene or inhibit cyclin-dependent kinase 2 kinase activity. If NIH-3T3 cells were exposed to radiation or suramin plus radiation, p21 mRNA levels were increased and cyclin-dependent kinase 2 kinase activity was inhibited, indicating that suramin does not block the cells' ability to increase p21 levels. To determine whether the G0-G1 arrest induced by suramin required p53, NIH-3T3 cells transfected with a dominant negative mutant p53 gene to eliminate wild-type p53 function (NMP cells) were exposed to suramin. NMP cells still exhibited G0-G1 arrest after suramin treatment. Suramin increases p53 protein levels, but fails to increase p21 mRNA levels or to activate the G1 checkpoint. These data suggest that suramin induces growth arrest in NIH-3T3 cells by a mechanism that is independent of cellular p53 status.

PreviousNext
Back to top
February 1996
Volume 2, Issue 2
  • Table of Contents

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Suramin increases p53 protein levels but does not activate the p53-dependent G1 checkpoint.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Suramin increases p53 protein levels but does not activate the p53-dependent G1 checkpoint.
S P Howard, S J Park, L Hughes-Davies, C N Coleman and B D Price
Clin Cancer Res February 1 1996 (2) (2) 269-276;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Suramin increases p53 protein levels but does not activate the p53-dependent G1 checkpoint.
S P Howard, S J Park, L Hughes-Davies, C N Coleman and B D Price
Clin Cancer Res February 1 1996 (2) (2) 269-276;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement