Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Enhancement of radiosensitivity in human malignant glioma cells by hypericin in vitro.

W Zhang, L Anker, R E Law, D R Hinton, R Gopalakrishna, Q Pu, U Gundimeda, M H Weiss and W T Couldwell
W Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Anker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R E Law
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D R Hinton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Gopalakrishna
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Q Pu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
U Gundimeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M H Weiss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W T Couldwell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published May 1996
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Hypericin, an antidepressant and antiviral agent being evaluated in phase I and II trials for patients with HIV infection, is known to be a potent protein kinase C inhibitor. We have investigated its effects on cellular response to radiation via a tetrazolium-formazan cell growth rate assay using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and clonogenic assay in three human glioblastoma cell lines, U87-MG, A-172, and T98G, and a low-passage malignant glioma culture, 93-492. At a concentration of 5 microM, hypericin inhibited these cells slightly but caused significant radiosensitization (e.g., the cell survival rate after the radiation treatment was 50.2 and 26.0% in cells treated with 6 Gy and 6 Gy plus 5 microM hypericin in U87-MG cells, respectively; P = 0.0285). Hypericin also enhanced the radiosensitivity significantly in the low-passage glioma 93-492 cells. These findings suggest that hypericin represents a potential new agent in combination with radiation therapy of malignant gliomas.

PreviousNext
Back to top
May 1996
Volume 2, Issue 5
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enhancement of radiosensitivity in human malignant glioma cells by hypericin in vitro.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Enhancement of radiosensitivity in human malignant glioma cells by hypericin in vitro.
W Zhang, L Anker, R E Law, D R Hinton, R Gopalakrishna, Q Pu, U Gundimeda, M H Weiss and W T Couldwell
Clin Cancer Res May 1 1996 (2) (5) 843-846;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Enhancement of radiosensitivity in human malignant glioma cells by hypericin in vitro.
W Zhang, L Anker, R E Law, D R Hinton, R Gopalakrishna, Q Pu, U Gundimeda, M H Weiss and W T Couldwell
Clin Cancer Res May 1 1996 (2) (5) 843-846;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement