Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

CCR 20th Anniversary Commentary

CCR 20th Anniversary Commentary: Vorinostat—Gateway to Epigenetic Therapy

Wm. Kevin Kelly, Paul Marks and Victoria M. Richon
Wm. Kevin Kelly
1Division of Solid Tumor Oncology, Departments of Medical Oncology and Urology, Sidney Kimmel Cancer Center at Thomas Jefferson University.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wm.kevin.kelly@jefferson.edu
Paul Marks
2Memorial Sloan Kettering Cancer Center, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victoria M. Richon
3Discovery and Preclinical Sciences, Sanofi Oncology, Cambridge, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-14-2556 Published May 2015
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The study by Kelly and colleagues, published in the September 1, 2003, issue of Clinical Cancer Research, established the safety and biologic activity of the first-in-class histone deacetylase inhibitor, vorinostat, which was administered intravenously. Subsequent studies led to the development of oral vorinostat and the regulatory approval of vorinostat for cutaneous T-cell lymphomas, which opened the door for the next generation of inhibitors. Clin Cancer Res; 21(10); 2198–200. ©2015 AACR.

See related article by Kelly et al., Clin Cancer Res 2003;9(10) September 1, 2003;3578–88

The development of cancer is a multistep process that involves multiple genetic and epigenetic alterations within the tumor and microenvironment. Histone acetylation and deacetylation of the core nucleosomal histones is an important mechanism regulating gene transcription. Defects in the enzymes regulating histone acetylation, namely, the histone acetyltransferases (HAT) and histone deacetylases (HDAC), have been described for both hematologic and solid tumor malignancies (1). Inhibitors of HDAC activity induce cell differentiation, growth arrest and/or apoptosis, and autophagy, as well as antiangiogenic effects (1). Richon and colleagues (2) showed that the novel hydroxymate HDAC inhibitor (HDACi), vorinostat [Zolinza; Merck; originally called suberoylanilide hydroxamic acid (SAHA)], induced differentiation, growth arrest, or apoptosis of transformed human cells in culture at micromolar concentrations. Vorinostat was originally identified based on its ability to induce differentiation of murine erythroleukemia cells (2). Subsequently, it was found to induce differentiation of human breast adenocarcinoma cells and growth arrest in human prostate carcinoma and bladder transitional cell carcinoma cells and block prostate cancer growth in in vivo studies (3). This work prompted the development of vorinostat as a therapeutic agent. The initial phase I intravenous formulation of vorinostat was shown to be well tolerated at doses that caused the accumulation of acetylated histones in peripheral blood mononuclear cells and antitumor effects (4). Following the intravenous formulation, an oral formulation was subsequently developed to provide improved patient convenience. The initial phase I study of oral vorinostat evaluated once- or twice-daily dosing on a continuous basis or twice-daily dosing for 3 consecutive days per week in patients with solid and hematologic malignancies. Seventy-three patients were treated with oral vorinostat, and the major dose-limiting toxicities were anorexia, dehydration, diarrhea, and fatigue. This study established that vorinostat could be administered chronically and safely using once-daily dosage (400 mg), twice-daily dosage (200 mg b.i.d.), and twice-daily dosage for 3 consecutive days (300 mg b.i.d.) every week (5). Vorinostat was shown to have good bioavailability and linear pharmacokinetics, and caused accumulation of acetylated histones in peripheral blood mononuclear cells, indicating inhibition of HDAC activity. Tumor regression and stable disease were observed in a wide range of patients with solid tumors and lymphomas. Major responses seen in 6 patients [1 complete response (CR) and 5 partial responses (PR)] occurred at the maximum tolerated dose and above; 5 of the 6 patients were treated on twice-daily regimens (5). This suggested that higher doses of vorinostat with more prolonged daily exposure might be required for tumor regression. Clinical activity was observed, with 1 CR and 1 PR in patients with diffuse large B-cell lymphoma, 2 PRs in patients with mesothelioma, and prolonged stable disease in thyroid cancer patients. The cumulative experience of the 39 patients with hematologic malignances treated with oral or intravenous vorinostat included 5 patients with measurable disease responses, and 1 patient with a transformed small-cell lymphoma had a CR (6).

Zhang and colleagues (7) observed that vorinostat induced dose-dependent apoptosis in three cutaneous T-cell lymphoma (CTCL) cell lines and peripheral lymphocytes in patients with CTCL. Their data suggested that induction of malignant T-cell apoptosis and modulation of acetylated histones, p21WAF1, bax, Stat6, and caspase-3 might underlie the therapeutic action of vorinostat in patients with CTCL (7). An early phase I study with the cyclic tetrapeptide HDACi, depsipeptide, demonstrated clinical activity in patients with CTCL (8). Based on these data, Duvic and colleagues performed a multiarm phase II study with vorinostat in patients with CTCL (9). Thirty-three patients were randomized to one of three dose regimens of vorinostat: (i) 400 mg daily; (ii) 300 mg for 3 days with 4-day rest; and (iii) 300 mg twice daily for 14 days with 7-day rest followed by 200 mg twice a day. CTCL patients were heavily pretreated with a median of 5 prior regimens. Eight patients (24.2%) were reported to have a PR, with median time to progression of 30.2 weeks, and an impressive 45% of the patients with baseline pruritus had symptomatic relief. This study also confirmed that the 400-mg daily dose of vorinostat had the most favorable toxicity profile for future studies. The pivotal study for vorinostat was a large multicenter phase II study involving 18 centers in the United States and Canada that enrolled 74 patients with stage IB or more advanced CTCL (10). Objective responses were observed in 30% of the patients, and the median time to tumor progression was 202 days. The adverse event profile was similar to that reported in prior studies. Overall, the objective tumor regression and duration of response, coupled with the improvement in symptoms, were comparable with the results with other FDA-approved CTCL therapies: bexarotene and denileukin diftitox. Based on the cumulative clinical activity and acceptable toxicity profile, on October 6, 2006, the FDA approved vorinostat for the treatment of CTCL in patients with progressive, persistent, or recurrent disease on or following two systemic therapies (11).

The encouraging success in CTCL launched multiple studies with vorinostat as a single agent and in combination therapy in patients with hematologic and solid tumor malignancies. Response proportions similar to those seen in CTCL have been reported in patients with non-Hodgkin and mantle cell lymphoma and follow-up studies are ongoing (12). Unfortunately, the same clinical activity as a single agent or in combination with chemotherapy has only shown very limited clinical activity in patients with solid tumor malignancies (non–small cell lung cancer, metastatic radioiodine-refractory thyroid cancer, metastatic breast cancer, head and neck cancer, platinum-refractory ovarian or primary peritoneal carcinoma; ref. 13). Several combination studies that evaluated vorinostat with 5-fluorouracil/leucovorin in refractory colorectal cancer; bortezimab plus vorinostat in glioblastoma; vorinostat in combination with carboplatin and paclitaxel in patients with advanced non–small cell lung cancer also had disappointing results (13). Vorinostat in addition to tamoxifen for the treatment of patients with hormone therapy–resistant breast cancer did show an objective response rate of 19%, and the clinical benefit rate was 40% with a median duration of response of 10.3 weeks (13).

Overall, the data have not supported the approval of vorinostat for the treatment of additional malignancies. While this is disappointing, the clinical introduction of vorinostat 12 years ago ushered in a new era of research and discovery for epigenetic therapy. The clinical experience with vorinostat and other HDACis has shown that these drugs can be administered safely to patients; these agents can achieve intratumoral drug concentrations that cause accumulation of acetylated histones (a biologic effect); and in selected patients, clinical benefit has been observed in hematologic and solid tumor malignancies. However, the studies with vorinostat and other epigenetic-based therapies have highlighted multiple challenges for the development of these agents. Critical to the use of these agents is the identification of patient selection biomarkers for subsets of patients who have benefited from treatment. While several studies have suggested patient selection biomarkers, they have not yet been fully realized and implemented in the postapproval setting. In addition, it is critical to continue to develop the tools for drug discovery in this area, including diverse chemistry libraries to enable the development of next-generation agents and predictive model systems that reflect the epigenetic diversity of human tumors (12, 14). In addition, an increased understanding of the role of acetylation on histones and nonhistone proteins will improve our ability to use these inhibitors in cancer and potentially expand their use beyond cancer. Vorinostat has helped open the door for development of the next generation of HDACis that are now under evaluation in the clinic, such as the HDAC6 selective inhibitor ACY-1215 and novel sirtuin modulators, which will further move forward our understanding of epigenetic therapies (15, 16).

Disclosure of Potential Conflicts of Interest

V.M. Richon is an employee of and has ownership interest (including patents) in Epizyme, and reports receiving royalties from Memorial Sloan Kettering Cancer Center for a vorinostat composition of matter patent that is licensed to Aton Pharma, which was acquired by Merck. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions

Conception and design: W.K. Kelly, P. Marks, V.M. Richon

Writing, review, and/or revision of the manuscript: W.K. Kelly, P. Marks, V.M. Richon

  • Received February 8, 2015.
  • Revision received March 16, 2015.
  • Accepted March 16, 2015.
  • ©2015 American Association for Cancer Research.

References

  1. 1.↵
    1. Kelly WK,
    2. Marks PA
    . Drug insight: histone deacetylase inhibitors–development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2005;2:150–7.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Richon VM,
    2. Emiliani S,
    3. Verdin E,
    4. Webb Y,
    5. Breslow R,
    6. Rifkind RA,
    7. et al.
    A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 1998;95:3003–7.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Butler LM,
    2. Agus DB,
    3. Scher HI,
    4. Higgins B,
    5. Rose A,
    6. Cordon-Cardo C,
    7. et al.
    Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000;60:5165–70.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Kelly WK,
    2. Richon VM,
    3. O'Connor O,
    4. Curley T,
    5. MacGregor-Curtelli B,
    6. Tong W,
    7. et al.
    Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003;9:3578–88.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Kelly WK,
    2. O'Connor OA,
    3. Krug LM,
    4. Chiao JH,
    5. Heaney M,
    6. Curley T,
    7. et al.
    Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 2005;23:3923–31.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. O'Connor OA,
    2. Heaney ML,
    3. Schwartz L,
    4. Richardson S,
    5. Willim R,
    6. MacGregor-Cortelli B,
    7. et al.
    Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006;24:166–73.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Zhang C,
    2. Richon V,
    3. Ni X,
    4. Talpur R,
    5. Duvic M
    . Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 2005;125:1045–52.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Piekarz R,
    2. Bates S
    . A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des 2004;10:2289–98.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Duvic M,
    2. Talpur R,
    3. Ni X,
    4. Zhang C,
    5. Hazarika P,
    6. Kelly C,
    7. et al.
    Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007;109:31–9.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Olsen EA,
    2. Kim YH,
    3. Kuzel TM,
    4. Pacheco TR,
    5. Foss FM,
    6. Parker S,
    7. et al.
    Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007;25:3109–15.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Mann BS,
    2. Johnson JR,
    3. Cohen MH,
    4. Justice R,
    5. Pazdur R
    . FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007;12:1247–52.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Khan O,
    2. La Thangue NB
    . HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 2012;90:85–94.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Slingerland M,
    2. Guchelaar HJ,
    3. Gelderblom H
    . Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs 2014;25:140–9.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Campbell RM,
    2. Tummino PJ
    . Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest 2014;124:64–9.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Di Costanzo A,
    2. Del Gaudio N,
    3. Migliaccio A,
    4. Altucci L
    . Epigenetic drugs against cancer: an evolving landscape. Arch Toxicol 2014;88:1651–68.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Santo L,
    2. Hideshima T,
    3. Kung AL,
    4. Tseng JC,
    5. Tamang D,
    6. Yang M,
    7. et al.
    Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012;119:2579–89.
    OpenUrlAbstract/FREE Full Text
View Abstract
PreviousNext
Back to top
Clinical Cancer Research: 21 (10)
May 2015
Volume 21, Issue 10
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CCR 20th Anniversary Commentary: Vorinostat—Gateway to Epigenetic Therapy
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
CCR 20th Anniversary Commentary: Vorinostat—Gateway to Epigenetic Therapy
Wm. Kevin Kelly, Paul Marks and Victoria M. Richon
Clin Cancer Res May 15 2015 (21) (10) 2198-2200; DOI: 10.1158/1078-0432.CCR-14-2556

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
CCR 20th Anniversary Commentary: Vorinostat—Gateway to Epigenetic Therapy
Wm. Kevin Kelly, Paul Marks and Victoria M. Richon
Clin Cancer Res May 15 2015 (21) (10) 2198-2200; DOI: 10.1158/1078-0432.CCR-14-2556
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Disclosure of Potential Conflicts of Interest
    • Authors' Contributions
    • References
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Cell Transfer Immunotherapy for Human Cancer
  • MAPK/ERK Inhibition in Melanoma: Kinase Inhibition Redux
  • ALK Fusion Clinicopathologic Features
Show more CCR 20th Anniversary Commentary
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement