Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Statistics in CCR

Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer

Kumardeep Chaudhary, Olivier B. Poirion, Liangqun Lu and Lana X. Garmire
Kumardeep Chaudhary
1Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Olivier B. Poirion
1Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liangqun Lu
1Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
2Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lana X. Garmire
1Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
2Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lgarmire@cc.hawaii.edu
DOI: 10.1158/1078-0432.CCR-17-0853 Published March 2018
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. To fill this gap, we present a deep learning (DL)–based model on HCC that robustly differentiates survival subpopulations of patients in six cohorts. We built the DL-based, survival-sensitive model on 360 HCC patients' data using RNA sequencing (RNA-Seq), miRNA sequencing (miRNA-Seq), and methylation data from The Cancer Genome Atlas (TCGA), which predicts prognosis as good as an alternative model where genomics and clinical data are both considered. This DL-based model provides two optimal subgroups of patients with significant survival differences (P = 7.13e−6) and good model fitness [concordance index (C-index) = 0.68]. More aggressive subtype is associated with frequent TP53 inactivation mutations, higher expression of stemness markers (KRT19 and EPCAM) and tumor marker BIRC5, and activated Wnt and Akt signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-JP cohort (n = 230, C-index = 0.75), NCI cohort (n = 221, C-index = 0.67), Chinese cohort (n = 166, C-index = 0.69), E-TABM-36 cohort (n = 40, C-index = 0.77), and Hawaiian cohort (n = 27, C-index = 0.82). This is the first study to employ DL to identify multi-omics features linked to the differential survival of patients with HCC. Given its robustness over multiple cohorts, we expect this workflow to be useful at predicting HCC prognosis prediction. Clin Cancer Res; 24(6); 1248–59. ©2017 AACR.

Footnotes

  • Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

  • Received March 23, 2017.
  • Revision received June 18, 2017.
  • Accepted October 2, 2017.
  • Published first October 5, 2017.
  • ©2017 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Clinical Cancer Research: 24 (6)
March 2018
Volume 24, Issue 6
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Editorial Board (PDF)

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer
Kumardeep Chaudhary, Olivier B. Poirion, Liangqun Lu and Lana X. Garmire
Clin Cancer Res March 15 2018 (24) (6) 1248-1259; DOI: 10.1158/1078-0432.CCR-17-0853

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer
Kumardeep Chaudhary, Olivier B. Poirion, Liangqun Lu and Lana X. Garmire
Clin Cancer Res March 15 2018 (24) (6) 1248-1259; DOI: 10.1158/1078-0432.CCR-17-0853
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosure of Potential Conflicts of Interest
    • Authors' Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Impact of Consensus Driver Genes in Hepatocellular Carcinoma
  • TITE-BOIN to Accelerate Phase I Trials
  • Accuracy, Safety, and Reliability of Novel Phase I Designs
Show more Statistics in CCR
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement