Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Reviews

Targeting Isocitrate Dehydrogenase Mutations in Cancer: Emerging Evidence and Diverging Strategies

Matthew S. Waitkus and Hai Yan
Matthew S. Waitkus
1Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina.
2The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matthew S. Waitkus
  • For correspondence: matthew.waitkus@duke.edu
Hai Yan
2The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina.
3Department of Pathology, Duke University School of Medicine, Durham, North Carolina.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1078-0432.CCR-20-1827 Published January 2021
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

This article requires a subscription to view the full text. You may purchase access to this article or login to access your subscription using the links below.

Abstract

Isocitrate dehydrogenase (IDH) active-site mutations cause a neomorphic enzyme activity that results in the formation of supraphysiologic concentrations of D-2-hydroxyglutarate (D-2HG). D-2HG is thought to be an oncometabolite that drives the formation of cancers in a variety of tissue types by altering the epigenetic state of progenitor cells by inhibiting enzymes involved in histone and DNA demethylation. This model has led to the development of pharmacologic inhibitors of mutant IDH activity for anticancer therapy, which are now being tested in several clinical trials. Emerging evidence in preclinical glioma models suggests that the epigenetic changes induced by D-2HG may persist even after mutant IDH activity is inhibited and D-2HG has returned to basal levels. Therefore, these results have raised questions as to whether the exploitation of downstream synthetic lethal vulnerabilities, rather than direct inhibition of mutant IDH1, will prove to be a superior therapeutic strategy. In this review, we summarize the preclinical evidence in gliomas and other models on the induction and persistence of D-2HG–induced hypermethylation of DNA and histones, and we examine emerging lines of evidence related to altered DNA repair mechanisms in mutant IDH tumors and their potential for therapeutic exploitation.

Footnotes

  • Clin Cancer Res 2021;27:383–8

  • Received May 12, 2020.
  • Revision received August 10, 2020.
  • Accepted September 1, 2020.
  • Published first September 3, 2020.
  • ©2020 American Association for Cancer Research.
View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Clinical Cancer Research: 27 (2)
January 2021
Volume 27, Issue 2
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Editorial Board (PDF)

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Targeting Isocitrate Dehydrogenase Mutations in Cancer: Emerging Evidence and Diverging Strategies
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Targeting Isocitrate Dehydrogenase Mutations in Cancer: Emerging Evidence and Diverging Strategies
Matthew S. Waitkus and Hai Yan
Clin Cancer Res January 15 2021 (27) (2) 383-388; DOI: 10.1158/1078-0432.CCR-20-1827

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Targeting Isocitrate Dehydrogenase Mutations in Cancer: Emerging Evidence and Diverging Strategies
Matthew S. Waitkus and Hai Yan
Clin Cancer Res January 15 2021 (27) (2) 383-388; DOI: 10.1158/1078-0432.CCR-20-1827
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Reversibility and Persistence of IDH1-induced Epigenetic Effects
    • Exploiting Altered DNA Damage and Repair Responses in IDH1mut Gliomas
    • Conclusion
    • Authors’ Disclosures
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Siglec-15 in Cancer Immunotherapy
  • The Changing Landscape of Therapeutic Cancer Vaccines
  • Intratumoral Immunotherapy: Trials & Practice
Show more Reviews
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement