Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Reciprocal changes in p27(Kip1) and p21(Cip1) in growth inhibition mediated by blockade or overstimulation of epidermal growth factor receptors.

Z Fan, B Y Shang, Y Lu, J L Chou and J Mendelsohn
Z Fan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Y Shang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Chou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Mendelsohn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published November 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Many human epithelial tumors express high levels of epidermal growth factor (EGF) receptors. A human-mouse chimeric version of anti-EGF receptor monoclonal antibody (mAb) C225, which blocks receptor activation and produces inhibition of cell proliferation, is currently being investigated in clinical trials. When cells bear high numbers of EGF receptors, either complete blockade of receptors with mAb 225 or full activation of receptors with EGF results in inhibition of proliferation. In the present study, we have explored the molecular mechanisms explaining how a receptor inhibitor, mAb 225, and a receptor activator, EGF, can both produce growth inhibition of A431 human squamous epithelial carcinoma cells. We reported previously that inhibition of A431 cells by EGF is associated with up-regulation of p21(Cip1). We now demonstrate that mAb 255-mediated inhibition is associated with up-regulation of p27(Kip1), which binds to and inactivates cyclin-dependent kinase-2 activity and produces cell cycle arrest in G1. Furthermore, inhibition by mAb 225 can be overcome by titrating the cultures with increasing concentrations of EGF, which is accompanied by a concurrent fall in the level of p27(Kip1). At properly titrated concentrations of mAb 225 and EGF, the inhibitory activities of both mAb 225 and EGF are counterbalanced and abolished. When EGF concentrations reach levels high enough to compete with mAb to produce near-saturating levels of receptor activation, p27(Kip1) falls below basal levels; however, the concomitant marked rise in the level of p21(Cip1) results in growth inhibition. Our data suggest that although p27(Kip1) and p21(Cip1) are induced and act independently, they play reciprocal roles in mediating inhibition of A431 cell growth by blockade of EGF receptors with mAb 225 and by activation of receptors with saturating concentrations of EGF.

PreviousNext
Back to top
November 1997
Volume 3, Issue 11
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reciprocal changes in p27(Kip1) and p21(Cip1) in growth inhibition mediated by blockade or overstimulation of epidermal growth factor receptors.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Reciprocal changes in p27(Kip1) and p21(Cip1) in growth inhibition mediated by blockade or overstimulation of epidermal growth factor receptors.
Z Fan, B Y Shang, Y Lu, J L Chou and J Mendelsohn
Clin Cancer Res November 1 1997 (3) (11) 1943-1948;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reciprocal changes in p27(Kip1) and p21(Cip1) in growth inhibition mediated by blockade or overstimulation of epidermal growth factor receptors.
Z Fan, B Y Shang, Y Lu, J L Chou and J Mendelsohn
Clin Cancer Res November 1 1997 (3) (11) 1943-1948;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement