Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells.

G K Schwartz, K Farsi, P Maslak, D P Kelsen and D Spriggs
G K Schwartz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Farsi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Maslak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D P Kelsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Spriggs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1997
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Flavopiridol (L86-8275) is a synthetic flavone currently undergoing Phase I clinical trials. It is active against a series of human cancer cell lines and has been shown to inhibit a broad range of protein kinases, including cyclin-dependent kinases and protein kinase C (PKC). Previous studies have shown that the PKC-specific inhibitor safingol significantly enhances the induction of apoptosis by mitomycin-C (MMC) in gastric cancer cells. Because flavopiridol can potentially inhibit PKC, we elected to determine the extent to which flavopiridol would promote MMC-induced apoptosis in both gastric and breast cancer cells. For these studies, MKN-74 gastric cancer cells and MDA-MB-468 breast cancer cells were exposed to either no drug, 1 microgram/ml MMC alone, 300 nM flavopiridol alone, or a combination of chemotherapy with flavopiridol for 24 h. Sequence specificity was also examined by first exposing cells to MMC for 24 h followed by flavopiridol for 24 h or to the same drugs in the reverse order. Apoptosis was measured by quantitative fluorescence microscopy of nuclear chromatin condensation in cells stained with the dye, bisbenzimide trihydrochloride. Exposure of MKN-74 cells to flavopiridol alone induced apoptosis in 12 +/- 1% of the cells, and exposure to MMC alone induced apoptosis in 10 +/- 1%. However, the combination of flavopiridol and MMC increased the induction of apoptosis to 55 +/- 3% of the cells (P < 0.005 for the drug combination versus flavopiridol alone). Pretreatment with the PKC activator 3-phorbol 12-myristate 13-acetate only partially reversed this effect (43 +/- 1%; P < 0.025). In MDA-MB-468 cells, flavopiridol alone induced apoptosis in 17 +/- 1% of the cells, and MMC alone induced apoptosis in 10 +/- 1% of the cells. The combination of flavopiridol and MMC increased the percentage of MDA-MB-468 cells undergoing apoptosis to 58 +/- 4% (P < 0.005 for the drug combination versus flavopiridol alone). Sequential treatment with MMC followed by flavopiridol induced apoptosis in 63 +/- 2% of the MKN-74 cells (P < 0.05 versus the concomitant drug combination) and in 76 +/- 2% of the MDA-MB-468 cells (P < 0.025 versus the concomitant drug combination), whereas flavopiridol followed by MMC did not increase the induction of apoptosis in either cell line. As determined by the terminal deoxynucleotidyl transferase labeling of the 3' ends of DNA fragments produced in apoptotic cells, the induction of apoptosis with the combination of flavopiridol and MMC occurred to MKN-74 cells in all phases of the cell cycle (i.e., G0-G1, S, and G2-M). These results indicate that flavopiridol potentiates the cytotoxic effect of the chemotherapeutic agent MMC by promoting drug-induced apoptosis in tumor cells. Sequencing studies suggest that MMC followed by flavopiridol or simultaneous treatment is superior to flavopiridol followed by MMC. The enhancement of MMC-induced apoptosis by flavopiridol may be partially PKC dependent and is not associated with one specific region of the cell cycle.

PreviousNext
Back to top
September 1997
Volume 3, Issue 9
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells.
G K Schwartz, K Farsi, P Maslak, D P Kelsen and D Spriggs
Clin Cancer Res September 1 1997 (3) (9) 1467-1472;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells.
G K Schwartz, K Farsi, P Maslak, D P Kelsen and D Spriggs
Clin Cancer Res September 1 1997 (3) (9) 1467-1472;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement