Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array.

C Shim, W Zhang, C H Rhee and J H Lee
C Shim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C H Rhee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J H Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published December 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The profiling of differentially expressed genes from primary tumor samples using cDNA expression array can reveal new tumor markers as well as target genes for therapeutic intervention. Using cDNA expression array technology, we produced an expression profile of genes that are associated with human cervical cancer. Hybridization of the cDNA blotting membrane (588 genes on a single membrane) was performed with 32P-labeled cDNA probes synthesized from RNA isolated from either normal cervix or cervical cancer. Parallel analyses of the hybridized signals enabled us to profile genes that were differentially expressed in cervical cancer. In each experiment, the extent of hybridization of each gene was evaluated by comparison with the most abundant mRNAs in the human cervix. These include myc proto-oncogene, 40S ribosomal protein S19, heat shock proteins, leukosialin S (CD43), integrin alphaL (CD11A), calgranulin (A), and CDK4 inhibitor (p16ink4). No detectable changes were observed in the expression levels of these genes. Several mRNAs, such as those encoding guanine nucleotide-binding protein Gs (alpha subunit), leukocyte adhesion protein (LFA1-beta), nuclear factor NF45, homeobox protein Hox-A1, and beta-catenin were detected in increased levels in cervical cancer. Genes that showed decreased expression in cervical cancer tissue were a group of apoptosis-related proteins, cell adhesion molecules, nuclear transcription factors, and a homeobox protein (Hox7). For example, the expression levels of Smad1 and Hox7 were consistently decreased in all tumor tissues tested. Northern analysis of Smad1 and Hox7 RNA in primary cervical tumor tissues and cervical carcinoma cell lines indicated that, in general, the mRNA levels of these genes were decreased in human cervical cancer. The precise relationship between the altered expression of these genes and cervical tumorigenesis is a matter of further investigation.

PreviousNext
Back to top
December 1998
Volume 4, Issue 12
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array.
C Shim, W Zhang, C H Rhee and J H Lee
Clin Cancer Res December 1 1998 (4) (12) 3045-3050;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array.
C Shim, W Zhang, C H Rhee and J H Lee
Clin Cancer Res December 1 1998 (4) (12) 3045-3050;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement