Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II.

A A Adjei, M Charron, E K Rowinsky, P A Svingen, J Miller, J M Reid, J Sebolt-Leopold, M M Ames and S H Kaufmann
A A Adjei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Charron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E K Rowinsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P A Svingen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Reid
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Sebolt-Leopold
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M M Ames
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S H Kaufmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published March 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Pyrazoloacridine (PA), an acridine congener with an unknown mechanism of action, has shown selective activity against solid tumor cells, cytotoxicity in noncycling and hypoxic cells, and promising antitumor activity in Phase I clinical trials. In the present study, the effect of PA on topoisomerase (topo) activity was evaluated using yeast strains lacking functional topo I or II, mammalian cell nuclear extracts, purified samples of mammalian topo I and topo II, and intact mammalian tissue culture cells. Clonogenic assays revealed that PA cytotoxicity in yeast strains was unaffected by selective loss of topo I or topo II activity. On the other hand, enzyme assays revealed that 2-4 microM PA abolished the catalytic activity of both topo I and topo II in vitro. In contrast to topotecan and etoposide, PA did not stabilize covalent topo-DNA complexes. Instead, PA inhibited topotecan-induced stabilization of covalent topo I-DNA complexes and etoposide-induced stabilization of topo II-DNA complexes in vitro and in intact cells. Consistent with these results, colony-forming assays indicated that short-term PA exposure inhibited the cytotoxicity of topotecan and etoposide, whereas prolonged PA exposure was itself toxic to these cells. Accumulation studies revealed that PA was concentrated as much as 250-fold in drug-treated cells, resulting in intranuclear concentrations that far exceeded those required to inhibit topo I and topo II. Collectively, these results not only suggest that PA can target both topo I and topo II at clinically achievable concentrations but also indicate that its mechanism is distinct from topo I and topo II poisons presently licensed for clinical use.

PreviousNext
Back to top
March 1998
Volume 4, Issue 3
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II.
A A Adjei, M Charron, E K Rowinsky, P A Svingen, J Miller, J M Reid, J Sebolt-Leopold, M M Ames and S H Kaufmann
Clin Cancer Res March 1 1998 (4) (3) 683-691;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II.
A A Adjei, M Charron, E K Rowinsky, P A Svingen, J Miller, J M Reid, J Sebolt-Leopold, M M Ames and S H Kaufmann
Clin Cancer Res March 1 1998 (4) (3) 683-691;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement