Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells.

F M Uckun, R K Narla, X Jun, T Zeren, T Venkatachalam, K G Waddick, A Rostostev and D E Myers
F M Uckun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R K Narla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X Jun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Zeren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Venkatachalam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K G Waddick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Rostostev
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D E Myers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published April 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The receptor (R) for epidermal growth factor (EGF) is expressed at high levels on human breast cancer cells and associates with ErbB2, ErbB3, and Src proto-oncogene family protein tyrosine kinases (PTKs) to form membrane-associated PTK complexes with pivotal signaling functions. Recombinant human EGF was conjugated to the soybean-derived PTK inhibitor genistein (Gen) to construct an EGF-R-directed cytotoxic agent with PTK inhibitory activity. The EGF-Gen conjugate was capable of binding to and entering EGF-R-positive MDA-MB-231 and BT-20 breast cancer cells (but not EGF-R-negative NALM-6 or HL-60 leukemia cells) via its EGF moiety, and it effectively competed with unconjugated EGF for target EGF-R molecules in ligand binding assays. EGF-Gen inhibited the EGF-R tyrosine kinase in breast cancer cells at nanomolar concentrations, whereas the IC50 for unconjugated Gen was >10 microM. Notably, EGF-Gen triggered a rapid apoptotic cell death in MDA-MB-231 as well as BT-20 breast cancer cells at nanomolar concentrations. The EGF-Gen-induced apoptosis was EGF-R-specific because cells treated with the control granulocyte-colony stimulating factor-Gen conjugate did not become apoptotic. Apoptosis was dependent both on the PTK inhibitory function of Gen and the targeting function of EGF, because cells treated with unconjugated Gen plus unconjugated EGF did not undergo apoptosis. The IC50s of EGF-Gen versus unconjugated Gen against MDA-MB-231 and BT-20 cells in clonogenic assays were 30 +/- 3 nM versus 120 +/- 18 microM (P < 0.001) and 30 +/- 10 nM versus 112 +/- 17 microM (P < 0.001), respectively. Thus, the EGF-Gen conjugate is a >100-fold more potent inhibitor of EGF-R tyrosine kinase activity in intact breast cancer cells than unconjugated Gen and a >100-fold more potent cytotoxic agent against EGF-R+ human breast cancer cells than unconjugated Gen. Taken together, these results indicate that the EGF-R-associated PTK complexes have vital antiapoptotic functions in human breast cancer cells and may therefore be used as therapeutic targets.

PreviousNext
Back to top
April 1998
Volume 4, Issue 4
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells.
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells.
F M Uckun, R K Narla, X Jun, T Zeren, T Venkatachalam, K G Waddick, A Rostostev and D E Myers
Clin Cancer Res April 1 1998 (4) (4) 901-912;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells.
F M Uckun, R K Narla, X Jun, T Zeren, T Venkatachalam, K G Waddick, A Rostostev and D E Myers
Clin Cancer Res April 1 1998 (4) (4) 901-912;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement