Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Cancer Research
Clinical Cancer Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
    • CME
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CCR Focus Archive
    • Meeting Abstracts
    • Collections
      • COVID-19 & Cancer Resource Center
      • Breast Cancer
      • Clinical Trials
      • Immunotherapy: Facts and Hopes
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Regular Articles

The in Vitro and in Vivo Effects of 2-(4-Morpholinyl)-8-phenyl-chromone (LY294002), a Specific Inhibitor of Phosphatidylinositol 3′-Kinase, in Human Colon Cancer Cells

Shuho Semba, Nanami Itoh, Masafumi Ito, Masaru Harada and Mitsunori Yamakawa
Shuho Semba
First Department of Pathology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nanami Itoh
First Department of Pathology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masafumi Ito
First Department of Pathology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masaru Harada
First Department of Pathology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mitsunori Yamakawa
First Department of Pathology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published June 2002
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Purpose: Phosphatidylinositol 3′-kinase (PI3K) and Akt/protein kinase B(PKB) allow for escape from apoptosis in various human cancer cells. We postulated that 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a PI3K inhibitor, should inactivate Akt/PKB, consequently inhibiting cell proliferation and inducing apoptosis in vitro and in vivo.

Experimental Design: Human colon cancer cell lines (DLD-1, LoVo, HCT15, and Colo205) and their mouse xenografts (DLD-1 and LoVo) were used in this study. The expression of phosphorylated Akt (Ser473) and apoptosis in cancer cells were determined by immunoblotting and immunohistochemistry. To evaluate the activity of caspase-3 in culturing cells, the caspase colorimetric assay was also performed.

Results: LY294002 demonstrated a remarkable growth-inhibitory and apoptosis-inducing effect in these colon cancer cell lines, with decreased expression of phosphorylated Akt (Ser473). However, there was a great discrepancy between the sensitivity for LY294002 and the level of expression of phosphorylated Akt. Although the LoVo and Colo205 cells exhibited high sensitivity to LY294002 with increased apoptosis, the DLD-1 and HCT15 cells did not show rapid induction of apoptosis. The caspase-3 activity was significantly high in the LoVo cells but not in the DLD-1 cells. In the experiments using mouse xenografts, we found that LY294002 administration in vivo also resulted in suppression of tumor growth and induction of apoptosis, especially in the LoVo tumors, and therefore showed remarkable effectiveness in the mouse peritonitis carcinomatosa model.

Conclusions: PI3K-Akt/PKB plays an important role in colon cancer development and progression by helping to promote cell growth and allowing cells to escape apoptosis. These results propose the usefulness of LY294002 as an antitumoral agent for patients with colorectal cancer.

  • Received October 17, 2001.
  • Revision received February 14, 2002.
  • Accepted March 15, 2002.
View Full Text
PreviousNext
Back to top
June 2002
Volume 8, Issue 6
  • Table of Contents
  • About the Cover

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Clinical Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The in Vitro and in Vivo Effects of 2-(4-Morpholinyl)-8-phenyl-chromone (LY294002), a Specific Inhibitor of Phosphatidylinositol 3′-Kinase, in Human Colon Cancer Cells
(Your Name) has forwarded a page to you from Clinical Cancer Research
(Your Name) thought you would be interested in this article in Clinical Cancer Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The in Vitro and in Vivo Effects of 2-(4-Morpholinyl)-8-phenyl-chromone (LY294002), a Specific Inhibitor of Phosphatidylinositol 3′-Kinase, in Human Colon Cancer Cells
Shuho Semba, Nanami Itoh, Masafumi Ito, Masaru Harada and Mitsunori Yamakawa
Clin Cancer Res June 1 2002 (8) (6) 1957-1963;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The in Vitro and in Vivo Effects of 2-(4-Morpholinyl)-8-phenyl-chromone (LY294002), a Specific Inhibitor of Phosphatidylinositol 3′-Kinase, in Human Colon Cancer Cells
Shuho Semba, Nanami Itoh, Masafumi Ito, Masaru Harada and Mitsunori Yamakawa
Clin Cancer Res June 1 2002 (8) (6) 1957-1963;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Regular Articles

  • 2-Methoxyestradiol Inhibits Hypoxia-Inducible Factor 1α, Tumor Growth, and Angiogenesis and Augments Paclitaxel Efficacy in Head and Neck Squamous Cell Carcinoma
  • Intermittent Hypoxia Induces Proteasome-Dependent Down-Regulation of Estrogen Receptor α in Human Breast Carcinoma
  • Potent and Specific Antitumor Efficacy of CMC-544, a CD22-Targeted Immunoconjugate of Calicheamicin, against Systemically Disseminated B-Cell Lymphoma
Show more Regular Articles

Experimental Therapeutics, Preclinical Pharmacology

  • Ring Finger Protein 43 as a New Target for Cancer Immunotherapy
  • Antifolate Resistance in a HeLa Cell Line Associated With Impaired Transport Independent of the Reduced Folate Carrier
  • ZD6474, a Potent Inhibitor of Vascular Endothelial Growth Factor Signaling, Combined With Radiotherapy
Show more Experimental Therapeutics, Preclinical Pharmacology
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • CCR Focus Archive
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Clinical Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Clinical Cancer Research
eISSN: 1557-3265
ISSN: 1078-0432

Advertisement