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Abstract

Purpose: Loss of chromosome 3 is strongly associated with metastasis in uveal melanoma and
has been proposed as the basis for clinical prognostic testing. It is not known whether techniques
that identify loss of heterozygosity for chromosome 3 predict metastasis more accurately than
those that detect only numerical loss of chromosome 3 (monosomy 3).

Experimental Design: Fifty-three uveal melanomas were analyzed by 28 single nucleotide
polymorphisms (SNP) across chromosome 3. SNP was compared with fluorescence in situ
hybridization (FISH) and array-based comparative genomic hybridization (aCGH) for metastasis
prediction by sensitivity, specificity, and Kaplan-Meier survival analysis, using our validated gene
expression-based classifier as a reference standard.

Results: By Kaplan-Meier analysis, only the gene expression-based classifier (P = 0.001) and
SNP-based detection of loss of heterozygosity for chromosome 3 (P = 0.04) were significantly
associated with metastasis. Sensitivity and specificity were 95.2% and 80.8%, respectively, for
SNP, 77.8% and 64.7 %, respectively, for FISH, and 85.0% and 72.0%, respectively, for aCGH.
Isodisomy 3 was identified by SNP but undetected by aCGH and FISH in three tumors.
Conclusions: Prognostic tests based on SNP platforms, which detect both chromosomal
homologues and their subregions, may be superior to techniques that only detect changes in
chromosome number. These observations could have important implications for efforts to detect

genetic alterations in cancer genomes with CGH-based approaches.

Uveal melanoma is the most common primary cancer of the
eye and has a strong predilection for hematogenous metastasis,
particularly to the liver (1). Up to half of uveal melanoma
patients develop metastasis with a median time of 2.4 years
from ocular diagnosis, usually leading to death within a few
months (2). This has lead some investigators to propose that
high-risk patients should be treated with prophylactic systemic
therapy (3). However, an accurate prognostic classifier for
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identifying high-risk patients who may benefit from prophy-
lactic therapy has not been validated.

Many clinical and pathologic features have been associated
with metastatic disease, but none of these has been shown to
have adequate sensitivity and specificity for making personal-
ized clinical decisions. Monosomy 3, detected by cytogenetic
analysis, spectral karyotyping, fluorescence in situ hybridization
(FISH), comparative genomic hybridization (CGH), and other
techniques, may be more accurate than clinical and pathologic
features and has been adopted as a molecular prognostic
marker in many centers (4-12). More recently, two distinct
molecular subgroups were identified by gene expression
profiling that correlate strongly with metastatic risk (13, 14).
Tumors with the class 1 expression signature had a low risk,
and those with the class 2 signature had a high risk of
metastasis. Although there was a strong association between the
class 2 signature and monosomy 3, the gene expression-based
classifier was superior in prognostic accuracy to monosomy 3
(13). Elucidating the reasons for this superiority is important,
not only from a biological standpoint, but also from a practical
one. Although gene expression profiling may be more accurate,
DNA-based chromosome 3 testing may be necessary where
high quality RNA is not available such as in tumors that are
partially necrotic or have been embedded in paraffin.

The inferior performance of monosomy 3 compared with the
gene expression classifier may be due, at least in part, to
technical limitations in the methods that have been used to
detect monosomy 3. Single nucleotide polymorphism (SNP)
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analysis has emerged as a promising method for detecting
chromosome copy number changes and loss of heterozygosity
(LOH) in cancer (15, 16). We have developed a high-
throughput, mass spectrometry-based assay to interrogate
highly polymorphic SNPs distributed across chromosome 3.
In this study, the prognostic accuracy of the SNP assay was
compared with traditional methods for measuring monosomy
3, including array CGH (aCGH) and FISH. Detection of LOH
by SNP was superior to aCGH and FISH, due in part to its
ability to detect isodisomy 3. These findings may have
important implications for efforts to identify genetic rearrange-
ments in cancer.

Materials and Methods

Preparation of DNA. This study was approved by the Human
Studies Committee at Washington University. Informed consent was
obtained from each subject. Tumor tissue from uveal melanoma
patients was obtained at the time of eye removal, immediately snap
frozen in the operating room, and stored at -80°C until DNA
preparation. Genomic DNA was prepared using the Wizard Genomic
DNA purification kit (Promega). Normal DNA was purified from
peripheral blood samples using the PureGene DNA Purification System
Blood kit (Gentra Systems).

SNP analysis. SNPs were selected from the Ensembl Homo sapiens
SNPs database (based on dbSNP 126, HGVbase 15, TSC 1, and
Affymetrix GeneChip Mapping Array) with minor allele frequencies
>0.4 in the European population (which describes all patients in the
study) at approximate intervals of 6 + 0.5 Mb across the euchromatic
regions of chromosome 3. Sequenom SpectroDESIGNER software was
used for the design of primers to permit genotyping in multiplex
fashion (“IPLEX” software). We selected 35 SNPs that met these
selection criteria and tested them on tumor DNA samples with known
genotypes. Seven SNPs were eliminated due to poor primer perfor-
mance or lower than expected minor allele frequency. The resulting 28
SNPs were included in the LOH assay. Reference IDs for SNPs that were
included and excluded from the final assay are available on request.
SNP-mass spectrometry-genotyping (16) was done with matrix-assisted
laser desorption/ionization-time-of-flight mass spectrometry by the
Division of Human Genetics Genotyping core facility’ using the
Sequenom MassARRAY system. Allele calls and confidence scores were
made by Sequenom software. For this initial analysis, only high
confidence calls were included. Matching normal DNA was analyzed in
22 cases to verify the accuracy of allele calls.

Statistical analysis. Fisher's exact test was used to assess the
significance of association between two categorical variables. Kaplan-
Meier analysis was used to assess time-dependent association with
metastasis for categorical variables. Sensitivity, specificity, likelihood
ratios, and predictive values were assessed using metastasis as the
primary end point and gene expression-based classification (class 1 or
class 2) as a surrogate end point in metastasis-free patients with <5 years
follow-up. This surrogate end point was selected based on the high
predictive accuracy of the gene expression classifier (17). All statistical
analyses were done using MedCalc software® (version 9.0.0.1).

Results

Clinical, pathologic, and molecular features of the 53 uveal
melanomas included in this study are summarized in Table 1.

4 http://hg.wustl.edu/info/Sequenomdescription. html
5 http://www.medcalc.be
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SNP analysis was done on all tumor DNA samples and on
matching peripheral blood DNA in 22 cases (Fig. 1A-C). Of
2,772 total SNP calls, 77% were scored as high confidence, and
only these calls were used for subsequent analyses. The SNP
assay revealed retention of heterozygosity for chromosome 3 in
29 tumors and LOH in 24 tumors (Supplementary Table). For
unmatched samples, the median number of informative SNPs
was 25 (range, 20-28) for retention of heterozygosity tumors
and 15 (range, 11-25) for LOH tumors. For matched tumors
exhibiting LOH, 65% of the SNPs that were heterozygous in the
normal DNA received a 'no call’ by the Sequenom software in
the tumor DNA. Inspection of the raw spectral data from these
cases showed a prominent peak for the homozygous tumor
allele and a minor but discernible peak that corresponded to
the second allele in the residual normal/germ-line DNA
(Fig. 1D), consistent with LOH in the tumor DNA and a small
amount of contaminating normal DNA. The unmatched tumor
with the fewest informative SNPs was MM66, which exhibited
LOH. Based on the allele frequencies for the 11 informative
SNPs in MM66, the probability that all would be homozygous
in the absence of LOH was 0.0004, thus providing a
conservative minimum estimate of significance for all LOH
calls.

Most of the tumors in this study were analyzed previously by
microarray gene expression profiling, dual-color FISH, and/or
aCGH (13, 17, 18). Therefore, we were able to compare the
SNP-based LOH assay with these other molecular techniques.
Of 42 tumors analyzed by the gene expression-based classifier,
23 were assigned to class 1 and 19 to class 2. Of the 28 tumors
analyzed by FISH, 18 were disomy 3 and 10 were monosomy
3. Of the 45 tumors analyzed by aCGH, 26 were disomy 3 and
19 were monosomy 3 (Supplementary Table). By Fisher’s exact
test, there was a significant association between the SNP assay
results and the gene expression-based classifier (P = 1 x 10?),

Table 1. Summary of clinical and pathologic
features
Clinicopathologic factors Patients (N = 53)
Age at diagnosis, mean (range) 60.7 (24-87)
Gender

Male 33 (62%)

Female 20 (38%)
Eye

Right 26 (49%)

Left 27 (51%)
Tumor location

Posterior 30 (57%)

Anterior 23 (43%)
Largest tumor diameter, mm, mean (range) 17.5 (5.4-24)
Tumor thickness, mm, mean (range) 9.8 (2.2-22)
Histopathologic cell type

Spindle 16 (30%)

Mixed 15 (28%)

Epithelioid 22 (42%)
Histopathologic local invasion

None 20 (38%)

Intrascleral 18 (34%)

Extrascleral 15 (28%)
Metastasis 13 (25%)
Months from diagnosis to 25.4 (1-67)

end point, mean (range)
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Fig. 1. Summary of SNP results. A, matching normal (/eft) and tumor DNA (right) in 22 cases. B, tumor DNA without matching normal DNA in 16 tumors that show
retention of heterozygosity for chromosome 3. C, tumor DNA without matching normal DNA in 15 tumors that show LOH. Each pair of rows represents a normal and/or
tumor sample. Columns represent SNPs, which are numbered consecutively. Thus, each SNP is represented by two boxes for each normal or tumor sample. For SNPs that
showed heterozygosity, both boxes are shaded in black. For SNPs that showed homozygosity, the upper box is shaded in gray. D, raw spectral data for two SNPs in tumor
and normal DNA from case MM41. The rs2203030 SNP, which received a ‘no call’ by the Sequenom software, displayed heterozygosity (two peaks of similar intensity) in
normal blood DNA but one major peak in the tumor DNA. However, the tumor DNA also contained a minor peak (arrow) corresponding to the second allele in the residual
normal/germ-line DNA. In contrast, the rs1039617 SNP displayed homozygosity in normal blood DNA and a corresponding single peak in the tumor DNA. Note that the
peaks that are not demarcated by a dotted line correspond to unrelated, multiplexed SNPs.

aCGH (P = 5.8 x 107), and FISH (P = 0.016). Using the gene
expression-based classifier as a benchmark, the SNP assay
exhibited 1 of 23 (4%) false-negative calls and 1 of 19 (5%)
false-positive calls, the aCGH assay 3 of 22 (14%) false-
negative calls and 3 of 19 (15%) false-positive calls, and FISH
5 of 17 (29%) false-negative calls and 2 of 9 (22%) false-
positive calls. Three of the tumors that were called disomy 3 by
aCGH and FISH but class 2 by gene expression profile (MM72,
MMS81, and MMI1) exhibited LOH by SNP, consistent with
isodisomy 3. Thus, SNP was concordant with the gene
expression classifier in these three cases due to its ability to
detect isodisomy 3.

www.aacrjournals.org
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By Kaplan-Meier analysis, only the class 2 gene expression
signature (P = 0.001) and chromosome 3 LOH detected by SNP
(P = 0.04) were significantly associated with metastasis (Fig. 2).
All three of the tumors with isodisomy 3 also exhibited the class
2 expression signature, and one of the three had developed
metastasis at the time of the study.

Sensitivity, specificity, likelihood ratios, and predictive values
were calculated for the SNP LOH assay and the two techniques
for detecting monosomy 3 (Table 2). To increase the statistical
power of this analysis, the primary end point was metastasis,
and the secondary end point was the gene expression-based
classification because this prognostic test previously was shown
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to have sensitivity and specificity superior to other clinical,
pathologic, and molecular features. Hence, patients were
assigned to the ‘metastasis-free’ group if they had no evidence
of metastasis with at least 5 years follow-up or if their tumor
exhibited the class 1 expression signature. Patients were
assigned to the ‘metastasis’ group if they had developed
metastasis or if their tumor exhibited the class 2 signature.
The SNP LOH assay was superior to both of the monosomy 3
detection methods, with sensitivity and specificity of 95.2%
and 80.8%, respectively, positive and negative predictive values
of 80.0% and 95.5%, respectively, and positive and negative
likelihood ratios of 4.95 and 0.06, respectively.

Discussion

We have shown previously that our RNA-based classifier is a
more accurate prognostic indicator than monosomy 3 or
clinicopathologic factors in uveal melanoma (13, 18). Never-
theless, we recognized the need to develop a DNA-based assay
both as a supplement to the RNA-based classifier and as an
alternative when RNA of sufficient quality for expression
profiling is not available. The DNA alteration most strongly

associated with metastatic disease is monosomy 3 (4-12). In
this study, we showed that a SNP-based assay for detecting LOH
of chromosome 3 was superior to assessing monosomy 3 using
chromosome counting techniques, such as FISH and aCGH.
LOH could be inferred from SNP analysis even when matching
normal DNA was not available, as shown previously for other
cancers (19). Further, intratumoral genetic heterogeneity is a
significant source of error when assessing monosomy 3 by FISH
(20), whereas SNP was able to discern LOH in the presence of
contaminating heterozygous cells.

An important advantage of SNP is its ability to detect
isodisomy 3. Indeed, all three false-negative calls by aCGH were
due to isodisomy. Importantly, isodisomy 3 carries the same
prognostic significance as monosomy 3 but is not detected by
FISH, CGH, and other techniques that count the number of
chromosomes. The frequency of isodisomy 3 in our study was
~ 6% of all uveal melanomas and ~ 16% of class 2 tumors.
Consequently, the false-negative rate associated with monoso-
my 3 detection methods could significantly compromise their
predictive accuracy. Isodisomy 3 also has important biological
implications. The fact that isodisomy 3 is associated with the
high-risk class 2 expression signature and metastasis suggests

Table 2. Predictive accuracy of molecular prognostic tests

Prognostic Sensitivity Specificity Positive Negative Positive Negative

factor (%) (%) likelihood ratio likelihood ratio predictive value (%) predictive value (%)
LOH (SNP) 95.2 80.8 4.95 0.06 80.0 95.5
Monosomy 3 (FISH) 77.8 64.7 2.20 0.34 53.8 84.6
Monosomy 3 (aCGH) 85.0 72.0 3.04 0.21 70.8 85.7
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that loss of chromosome 3 is not only a marker of metastasis,
and that its pathologic effect is not simply due to haploinsuffi-
ciency. Rather, this observation implies that the copy of
chromosome 3 that is retained in monosomy 3 tumors is
defective at one or more tumor suppressor loci, and that it is
this ostensibly defective copy that is duplicated in isodisomy 3
tumors.

We used as the basis for our LOH assay the recently developed
technique of SNP-mass spectrometry, which allows rapid,
inexpensive, and high-throughput analysis of many SNPs (16).
This technique benefits from the rapidly increasing database of
SNPs and their frequencies across the genome, and it is likely to
become more efficient as additional SNPs are identified and
incorporated into high-density array formats. For this initial
proof-of-principal study, a relatively small number of SNPs were
used, and only high confidence calls were included. Because loss
of chromosome 3 that is associated with metastasis almost
always involves the entire chromosome, rather than small
interstitial deletions (21), we were able to achieve accurate
results with relatively few SNPs. Nevertheless, we plan to

interrogate more SNPs to determine whether greater density of
SNP coverage would increase the statistical power of the assay.
Microsatellite analysis is another approach for detecting LOH
that has been used in uveal melanoma (22, 23). However, the
scalability and low cost of the SNP-mass spectrometry technol-
ogy will likely lead to its increased use in lieu of microsatellite
analysis (15). As a greater density of SNPs is incorporated into
the testing platform, the increased saturation of chromosome 3
will further increase testing accuracy.

The superior predictive accuracy of the SNP platform may be
highly relevant because this test could be used in the future to
determine whether a patient will receive adjuvant systemic
therapy. Because this was a relatively small study, further
validation of the SNP platform is under way in a larger,
prospective study.
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