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oxia exists in every solid tumor and is associated with poor prognosis because of both local and
ic therapeutic resistance. Recent studies have focused on the interaction between tumor cell genet-
d the dynamic state of oxygenation and metabolism. Hypoxia generates aggressive tumor cell phe-
es in part owing to ongoing genetic instability and a “mutator” phenotype. The latter may be due to
ession of DNA mismatch repair (MMR), nucleotide excision repair (NER), and double-strand break
repair. We propose a theoretical model in which hypoxia-mediated defects in DNA repair can lead
ntextual loss of heterozygosity” and drive oncogenesis. Additionally, hypoxia-mediated repair
s can be specifically targeted by DNA damaging agents and/or “contextual synthetic lethality”
repair-deficient cells and preserve the therapeutic ratio. These proposed concepts support the in-
ation of solid tumors to document repair defects in both oxic and hypoxic tumor subregions as a
terrog

conduit to novel clinical trials within the context of personalized medicine. Clin Cancer Res; 16(18); 4553–60.
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microenvironment of solid tumors differs greatly
that of normal tissues as it can contain regions of
ia (a decreased level of oxygen), increased intersti-
id pressure, and decreased pH and nutrient delivery
. Hypoxia is associated with both local and systemic
y resistance, and decreased disease-free survival
een observed in many human cancers (3–11).
rtantly, hypoxia is an adverse prognostic factor in
s treated with either radiotherapy or surgery. Hence
ia is not only a determinant of local radio- or che-
istance, but also tumor progression and systemic
tasis. The latter may be due to altered transcription
ranslation of metastatic genes, but could also be
dary to clonal selection of a “mutator” phenotype
13). This unstable phenotype may result from
ia-mediated suppression of DNA mismatch repair
), nucleotide excision repair (NER), and double-
break (DSB) repair [whether by homologous re-
ination (HR) or nonhomologous end-joining
ression of DNA repair in oxic and hypoxic
efore, have profound consequences, given
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esidual or misrepaired DNA breaks can be highly
ogenic and generate chromosomal alterations in
enes and tumor suppressor genes during tumor
ssion (14, 15).
s report critically reviews preclinical and clinical
s that link tumor hypoxia and DNA repair pathways
vers of genetic instability and tumor progression. We
ighlight recent work in which these DNA repair
therapeutic approaches.

els of Hypoxia and Resistance to
otherapy and Chemotherapy

abnormal vasculature of tumors resulting from
ulated angiogenesis is probably the most important
ibutor to the development of both chronic and
hypoxia in the majority of solid tumors (reviewed
. 1). Tumor blood vessels are often chaotic, leaky,
nly distributed, and generally of poor quality.
ic hypoxia, or potentially anoxia (a complete lack
ygen), develops in solid tumors because of abnor-
long intravascular erythrocyte transit times. Together
he irregular distribution of tumor blood vessels and
d diffusion of oxygen through the tumor intersti-
this leads to hypoxia at distances greater than
m from the blood vessels. Acute hypoxia or anoxia
because of transient changes in blood flow and can
e to temporary occlusions of blood vessels, possibly

vated by elevated interstitial fluid pressure and
hypoxic vasodilation (1, 2, 16, 17). This opening
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osing of tumor blood vessels can expose tumor cells
les of hypoxia and reoxygenation (termed “cycling”
ia).
decades, tumor biologists have studied the associa-
etween tumor oxygenation and response to radio-
y and chemotherapy (reviewed in ref. 18). The
ve level of oxygen at the time of irradiation
ines the efficacy of radiotherapy, by limiting the

nd number of lethal DNA lesions (e.g., DNA DSBs).
tion-mediated free radicals result from ionizations in,
y close to, the DNA and create DNA lesions that are
n dependent (1). At partial pressures of oxygen (pO2)
10 mmHg, tumor cells can acquire “radiobiologic”
ia, whereby anoxic cells are up to three times more
esistant than oxic cells [the oxygen enhancement
OER); ref. 1]. The OER is calculated as the ratio of
needed to achieve the same biological effect
eath) under hypoxic and oxic conditions, and can

high as 3.0 for most tissues (1, 19–21). The hypox

reen) and RAD51 (red). Line intensity profile across the EF5-avid gradient shows
Scale bar represents 100 μm.

ancer Res; 16(18) September 15, 2010
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uted to reoxygenation of hypoxic regions over
ple treatments.
istance of hypoxic cells to chemotherapy is caused by
ber of factors including: (i) decreased drug action in
sence of O2 (as is the case for bleomycin and etopo-
(ii) decreased effect of cell-cycle dependent agents
orly proliferating hypoxic cells; (iii) altered pH
nts (altered activity of alkylating agents and antime-
tes); (iv) induction of gene amplification (e.g., meth-
ate resistance); and (v) overall decreased drug
ion and delivery to cells distant from functional
ature.
wever, these classic concepts of tumor resistance have
tly been made more complex on the basis of data
functional studies using HR-proficient and -deficient
22, 23). Prolonged chronic hypoxia can lead to de-
d expression of HR genes (Fig. 1), which decreases
dioresistance of these cells compared with acutely

ic cells and is quantified by a decreased OER (22).
s of fractionated radiotherapy is, therefore, partially Furthermore, chronically hypoxic cells that are HR deficient

Hypoxia decreases DNA-repair protein expression in vitro and in vivo. A, Western blot of RKO colorectal cancer cells showing decreased
ion of the HR DSB repair protein RAD51, and the DNA MMR protein MSH2, under hypoxic conditions in vitro (e.g., 72 hours exposure at 0.2% O2).
a can also stabilize the p53 protein as shown. HIF-1α is shown as a positive control for hypoxia. B, RKO xenograft costained in situ for hypoxia
inverse association between the hypoxic marker EF5 and RAD51
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eoxygenated before oxic irradiation are more
ensitive than oxic HR-proficient cells. These studies
med a previous report that the OER was reduced
genic cell lines that were deficient in HR (23).
whereas acutely anoxic tumor cells may be highly
ant to ionizing radiation, chronically hypoxic
r subregions may contain cells with differential
and chemosensitivity, which together determine

verall sensitivity of the tumor to cancer treatment
).
etic instability can also arise in anoxic and hypoxic
24–26). In response to anoxia, cell-cycle checkpoint-
ient cells activate ataxia telangiectasia mutated
) and ataxia telangiectasia and Rad3-related (ATR)
damage kinase–mediated intra–S-phase arrest of
replication. When reoxygenated, cells can generate re-
oxygen species (ROS) and DNA breaks, which lead to
2-dependent, G2 arrest and attempted repair of ROS-
ted DNA damage (27–30). In contrast, diffusion-
d, chronically hypoxic cells may slowly adapt to
singly low oxygen conditions and bypass these check-
. These proliferating hypoxic cells may then be prone
A replicative errors (13). Therefore, tumor hypoxia
e both spatially and temporally heterogeneous with
ic gradients of oxygenation, and lead to differential

gy with respect to signaling and repair of DNA

n]. In contrast, these cells are not further sensitized to DNA repair–independ
2).
ge. Models of hypoxia-mediated aggression should
nto account the effects of hypoxia on DNA repair

MNT/
genes

acrjournals.org

Research. 
on November 13,clincancerres.aacrjournals.org wnloaded from 
s could alter the sensitivity of tumor cells to current
r treatments, or provide novel treatment strategies
gh synthetic lethality; these concepts are discussed
.

xia and Mismatch Repair

A MMR is responsible for recognizing and repairing
eous insertion, deletion, and misincorporation of
that arise during DNA replication (31). Suppres-
f the MMR pathway by hypoxia has been previous-
cumented with specific down-regulation of the
proteins MLH1, MSH2, and MSH6 (Fig. 1), leading
omic instability (15, 32–34). Several mechanisms
e decreased gene expression have been proposed.
ji and colleagues reported that the altered expres-
f MSH2 was associated with hypoxic up-regulation
poxia inducible transcription factor 1α (HIF-1α),
displaced c-MYC from the msh2 promoter in a

ependent manner (34). Nakamura and colleagues
sted that down-regulation of the mlh1 gene was
sed by DEC1/2 and decreased binding to E-box–
otifs in the mlh1 promoter region (35). Other work
hown that the repression of MLH1 and MSH2
via a HIF-1α–independent shift in occupancy from
ting c-MYC/MAX to repressive MAD1/MAX and

mage (e.g., taxanes). Portions of this figure are adapted from Chan
Hypoxia-induced HR defects sensitize tumor cells to DNA damaging agents. A, model of hypoxic modification of DNA repair as a determinant
urvival following exposure to DNA damage agents. B, acute hypoxia (6 hours × 0.2% O2) renders H1299 lung carcinoma cells resistant to ionizing
n (IR). In contrast, chronically hypoxic (72 hours × 0.2% O2) repair-deficient cells are relatively radiosensitive when compared with acute hypoxia.
ect is HR-dependent as the same effect is not observed in HR-deficient CAPAN1 cells that lack BRCA2. C, chronic hypoxia also sensitizes
cells to chemotherapeutic agents that preferentially sensitize HR-defective cells [PARP inhibitors (e.g., KU0059436), mitomycin C (MMC), and
MAX complexes at the proximal promoters of both
(36).

Clin Cancer Res; 16(18) September 15, 2010 4555
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ed on data from germline or somatic loss of MMR
expression, MMR-deficient hypoxic cells would be
ted to be more sensitive to topoisomerase poisons
as camptothecin and etoposide (37), as well as to
n alkylating agents such as 1-(2-chloroethyl)-3-
exyl-1-nitrosourea (38) and mitomycin C (14, 39).
ersely MMR defects can also impart resistance to
common chemotherapeutic agents, including

minor groove binders (40), antimetabolites such as
guanine (41), certain alkylating agents such as temo-
ide (42), and certain platinum compounds such
platin (43). Therefore, the functional effects of
ia on MMR gene expression and consequences for
r cell radiosensitivity and chemosensitivity require

r study as this may direct individualized cancer On
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xia, the Nucleotide Excision Repair, and
oni Anemia Pathways

is an important DNA repair pathway responsible
removal of helix-distorting DNA adducts, including
duced cyclobutane pyrimidine dimers and 6-4
products. Lung cancers harboring increased expres-
of the NER protein ERCC1 (44, 45) have been
ted to be resistant to cisplatin. Conversely, NER-
nt cells are sensitive to cisplatin and alkylators such
tomycin C and temozolomide. The Fanconi anemia
pathway primarily responds to DNA damage that
stalling of DNA replication forks during S phase,

A cells are also more sensitive to DNA cross-linking
(14).

y little is known about the effect of hypoxia on NER.
ni and colleagues have recently reported that HIF-1α
riptionally regulates the expression of two NER pro-
XPC and XPD, by binding to the hypoxia-responsive
nts within their promoters (46). Additionally, the
protein RAD23B has been reported to be down-
ted under hypoxia through a mechanism involving
α–dependent activation of miR-373 (47). Two con-
ting reports have been published using a host-cell
vation (NER-dependent repair of a UV-damaged
id) assay to measure functional NER. Yuan and

gues first showed that hypoxia combined with low
4 hours × 0% O + pH 6.5) decreased host-cell

phory
of am

le xia-i
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ation of a UV-damaged plasmid encoding the lucif-
gene (48). Subsequently, a recent report has shown
sed repair of a UV-damaged adenovirus expressing
nder conditions of hypoxia (12 to 24 hours × 1%
r hypoxia + low pH (pH 6.5; ref. 49). Kuhnert and
gues have recently reported that FANCD2-deficient
lasts are hypersensitive to radiation under hypoxic
tions; this may explain the discrepancy between the
al and cellular radiosensitivity of FA patients (50).
r studies are needed to clarify FA protein expression
nction under hypoxic conditions.

xia and Double-Strand Break Repair

e of the most critical DNA lesions requiring repair are
which are primarily repaired by the HR and NHEJ
ays (51–53). HR is a template-guided repair path-
perating in the S and G2 phases of the cell cycle
sults in error-free repair. By contrast, NHEJ can occur
ghout the cell cycle without the use of a homologous
ate and can be precise or imprecise, depending on
ucture of the DNA end. Several groups have reported
e expression and function of HR repair proteins, in-
g RAD51, BRCA2, and BRCA1, are compromised
hypoxic conditions (Fig. 1; refs. 12, 22, 54). Given
lationship between HR and the cell cycle, it was an
tant observation that decreased HR gene expression
dependent of p53, HIF-1α, and cell-cycle distribu-
12, 22, 54). Data pertaining to the function of the
pathway are more conflicted, with reports suggest-
is either unchanged (54), or possibly up-regulated
by hypoxia.
initial model of hypoxia-induced transcriptional
sion of HR genes was proposed by Bindra and
gues (12, 56), who showed that the hypoxic
-regulation of RAD51 and BRCA1 is associated with
ch from E2F-based transcriptional activation to that
ression. However, RNA and protein expression of
nes can be discordant under hypoxia (54). Another
l invokes translational repression as the basis for
sed HR protein expression (22, 57). Under hypoxia,
ranslational suppression is controlled through at
two distinct pathways; first, by protein kinase-like
lasmic reticulum kinase (PERK)-mediated phos-

lation of eIF2α, which is required for the recruitment
inoacylated tRNA, and second, by disruption of the
2
agen
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creased efficacy
nduced DNA repair defects and anticancer
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cap-binding complex, eIF4F (58). However, specif-
dies comparing the exact role of transcription and
ation in mediating differential protein expression
the MMR, NER, FA, and DSB repair pathways in

ic versus oxic cells have not yet been reported. Addi-
ly, HIF-1α–dependent activation of miR-210 has
hown to down-regulate the RAD52 HR protein (47).
-defective cells are known to be more sensitive to
ycin C and cisplatin, and suggest that hypoxia
drive a similar sensitivity if HR function were

romised. Indeed, similar to the sensitization of HR-
ive hypoxic cells to ionizing radiation, Chan and
gues also observed sensitization to cisplatin and
ycin C, but not taxanes (Fig. 2C; ref. 22). Some
s suggest that these tumor cells with HR defects
lso be more sensitive to etoposide (59). Additional-
-defective cells are more sensitive to inhibition of
DP ribose polymerase 1 (PARP1) because of syn-

lethality (60–62), and this special case in relation

Rec
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caused
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can res
sensitiv
hypoxic DNA-repair gene expression in wild-type cells or cells with
monoallelic loss (i.e., heterozygous).
oxic cells is discussed in detail below.

eting Hypoxia-Induced Repair Defects:
textual Synthetic Lethality”

thetic lethality is the concept that mutation in two
leads to death, whereas mutation of either alone is
atible with viability (63). Cells with defects in the
thways can be preferentially sensitized to inhibitors
single-strand break (SSB) repair protein PARP1 (50,
, 64–68). Indeed, tumor cells exposed to chronic
ia leading to an HR defect have increased sensitivity
se agents (Fig. 2C; ref. 62). The use of PARP inhibi-
target hypoxic tumor cells is an example of “contex-
nthetic lethality,” in which a hypoxia-induced repair
is targeted by inhibiting or disrupting the backup
ay. This approach has significant therapeutic poten-
highly potent and selective PARP inhibitors have
y shown clinical effectiveness in treating BRCA-
ent tumors (64). It, therefore, seems reasonable to
dvantage of deficiencies in DNA repair to kill hypox-
s that could acquire a repair-deficient and mutator
type. This approach would still preserve the thera-
ratio because very few normal tissues contain hyp-
ells.
veat to this approach is the requirement for prolifer-
as PARP inhibitors mediate their toxicity by inducing
sed replication forks (61). It has been previously
that tumor cells can have hypoxia-mediated de-

s in DNA-repair protein expression at moderate
of hypoxia that still allow for proliferation (22).
ore, hypoxic tumor cells at an intermediate distance
he blood vessels would theoretically still be sensitive
approach. This hypothesis is testable using bromo-
uridine staining to detect proliferating cells, EF5
g to detect hypoxic cells, RAD51 staining to detect
eficient cells, and γH2AX staining to detect DNA
ge and/or cell death.

agent
increa
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ently, deficiency in the MMR proteins MSH2 and
were shown to be synthetically lethal with disrup-
f the DNA polymerases POLB and POLG, respective-
). Both of these MMR proteins are known to be
-regulated by hypoxia and therefore inhibition of
or POLG may show contextual synthetic lethality
ypoxia. At the moment, clinically useful inhibitors
LB or POLG are not yet available, but given the
inhibition of MSH2 and MLH1 by hypoxia, this is

cept that warrants further study. A final example is
servation that the FA pathway can be compromised
hypoxic conditions (50), and FA defective cells are
sensitive to ATM inhibitors (70). Table 1 sum-
es known hypoxia-induced DNA repair defects and
Concept of contextual LOH. Hypoxia-mediated contextual LOH is
by hypoxia-mediated decreased gene expression instead of a
n or loss of the second allele. Reduced expression of a DNA
ene that acts as a tumor suppressor gene (e.g., BRCA2 or MSH2)
ult in malignant transformation, progression, and altered
ity to DNA damaging agents. Model shows potential effect of
s that may potentially have synthetic lethality or
sed efficacy under hypoxic conditions.
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xia and “Contextual Loss of
rozygosity”

propose that tumor hypoxia may drive malignant
ssion, and possibly carcinogenesis, through a model
ntextual loss of heterozygosity” (LOH) for DNA re-
enes. Instead of an inactivating mutation, contextual
could occur by hypoxia-mediated loss of expression
nction of one allele of a DNA repair gene, in which
her allele is already inactivated by genetic deletion,
ion, or hypermethylation (Fig. 3). If the gene in ques-
a tumor suppressor gene involved in DNA-damage

point control (e.g., ATM, ATR, Rb, p53, or MDM2) or
al DNA repair protein (PARP1, DNA-PKcs, BRCA1 or
2), malignant transformation or progression may re-
n fact, we have documented monoallelic losses for a
er of DSB and SSB repair genes in prostate cancer, a
in which hypoxia is known to be a negative predic-
ctor (3, 71, 72). This model could also be tested for
ctal cancer, in which regions of hypoxia have been
ented in normal mucosa, benign adenoma, and carci-
s (73). Germline mutations in MLH1 or MSH2, two
known to be suppressed by hypoxia, are linked to he-
ynonpolyposis colorectal cancer (74). Furthermore, ac-
lation of K-ras mutations (a common alteration in
ctal cancer) has been correlated to hypoxia-induced de-
s in MSH2 expression (15). Thus, it is conceivable that
ctal cells with only one normal allele of mlh1 or msh2
have further reduced functional protein expression un-
poxic conditions. This situation could ultimately drive
c instability, carcinogenesis, and tumor progression. A
r biology could also underlie hypoxic modification of
tatus and UV- or carcinogen-induced skin cancers
8). This hypothesis will require testing of the effect of
ia on carcinogenesis and tumor progression using
ic models, which are wild-type, heterozygous, or ho-
ous null for DNA-repair gene expression and function.

lusions

rerequisite for the use of novel therapies or predictors
come based on these preclinical studies is the ability
dict the fraction of repair-deficient hypoxic cells in
tumors. One strategy using xenografts could involve
a serial injection of two different hypoxic markers,
s pimonidazole and EF5 in combination with mark-
proliferation (e.g., bromodeoxyuridine), and blood
s, as described by Ljungkvist and colleagues (79). In-

oral regions that are matched for the two hypoxic Rece

rris AL. Hypoxia–a key regulatory factor in tumour growth. Nat
v Cancer 2002;2:38–47.
rgis R, Corbishley CM, Norman AR, et al. Intrinsic markers of

tum
an
tw
La

4. Bi

ancer Res; 16(18) September 15, 2010

Research. 
on November 13,clincancerres.aacrjournals.org wnloaded from 
aining are acutely hypoxic. Simultaneous staining
A repair proteins (e.g., RAD51) would allow corre-
of hypoxic states to DNA-repair protein expression.
lative repair of DNA-DSBs could then be tracked as a
on of acute and chronic hypoxia following DNA
ge and be correlated to tumor radio- and chemore-
e. If proven, this concept will be clinically feasible
innovative, noninvasive imaging techniques are de-
ed to track both acute and chronic hypoxia during
ent, to allow effective intervention with novel ther-
including the use of synthetically lethal approaches.
this end, noninvasive techniques for imaging tumor
ia are being developed, including the use of radio-
d 2-nitroimidazoles imaged with positron emission
graphy (PET; 18F-FMISO, 18F-FAZA, 18F-EF5, and
ATSM), or single photon emission computed tomog-
(SPECT; 123IAZA) to achieve linically useful signal-
ise ratios (80). Additionally, functional computed
graphy (CT) and blood oxygen-level dependent
D) magnetic resonance imaging (MRI) are being
ped to provide information about the tumor micro-
nment (perfusion, vascular permeability, extracellu-
lume, and hypoxia) as well as detailed anatomic
ation (81–83).
ummary, the current literature has shown that hyp-
mor cells can have suppression of the HR, NER, and
pathways. However, the impact of hypoxia on the
and base-excision repair pathways still requires ad-
al study. Further understanding of the contextual
etic lethality to these and other DNA damage signal-
d repair pathways could define new approaches to
oprevention and selection of the best agents to indi-
lize cancer therapy.
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