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pose: The essential role of CD4+ T cells as helpers of anticancer immunity is indisputable. Little is
n, however, about their capacity to serve as effector cells in cancer treatment. Therefore, we explored
ficacy of immunotherapy with sole CD4+ cytotoxic human T cells directed at a hematopoietic-
ted minor histocompatibility antigen (mHag).
erimental Design: In macrophage-depleted Rag2−/−γc−/− mice, which were also devoid of T, B, and
l killer cells, mHag-specific native T cells or tetanus toxoid (TT)-specific T cells transduced with the
-specific T-cell receptor (TCR) were injected to treat full-blown mHag+ human multiple myeloma
s.
ults: mHag-specific antitumor responses were achieved after injection of native or mHag-TCR-
uced T cells. Although the therapy completely eradicated the primary tumors in the bone marrow,
d to control extramedullary relapses, even after repeated T-cell injections. Detailed analyses ruled
Hag or MHC downregulation as mechanisms of extramedullary tumor escape. Impaired T-cell
al in vivo or defective homing to the tumor site were also ruled out as mechanisms behind extra-
llary relapses, because injections of TT-loaded antigen presenting cells could facilitate homing of
erm surviving T cells to s.c. tumor sites. Moreover, intratumoral treatment of extramedullary tumors
AB11 was also ineffective.
clusions: Taken together, these results for the first time show the feasibility of immunotherapy
mary bone marrow tumors with sole CD4+ human T cells directed to a tumor-associated mHag.
edullary relapses, probably due to microenvironment-dependent inhibitory mechanisms, remain
Extram

a challenging issue towards effective cellular immunotherapy of hematologic malignancies. Clin Cancer Res;

16(22); 5481–8. ©2010 AACR.
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immune system is armed with various cellular tools
bat cancer. Over the past decades, the therapeutic

cy of these tools was shown not only by the success-
atment of experimental animal tumors with adop-
transferred T cells, but also by the induction of
erm remissions in leukemia patients after treatment
stem cell transplantation and donor lym-
ns (DLI; ref. 1). To date, it is evident that
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CD8+ and CD4+ T cells are essential components
itumor immunity. In the current view, CD8+ T cells
nsidered the main effector cells of anticancer re-
es, whereas a helper function is attributed to CD4+

(2–6). Even in studies in which effective antitumor
nses have been achieved with CD4+ T cells in the
ce of CD8+ T cells, these responses were reported
pend on other immune cells as macrophages or
l killer (NK) cells (7–11). Nonetheless, we and others
shown that several Th1-like CD4+ T cells possess
xic capacity against murine and human tumor cells
6). The cytotoxic antitumor activities can even be
erred into recall antigen [tetanus toxoid (TT)]-specific
T cells by the well-known T-cell receptor (TCR) trans-
proach (12). These studies suggest that next to their
r functions, CD4+ T cells may also serve as effector T
n human cancer immunity for direct killing of tumor
t the moment, the need to estimate the in vivo impact

4+ T cells as sole effector cells in the treatment of
tologic malignancies becomes increasingly urgent
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Translational Relevance

CD4+ T cells are essential as helper T cells in anti-
cancer immunity. Little is known, however, of whether
they also serve as effector cells in cancer treatment.
We therefore explored the feasibility of cancer treat-
ment with sole CD4+ T cells in a well-established
humanized murine model. We show that multiple
myeloma tumors primarily progressing in the bone
marrow can be effectively eradicated by the injection
of a cytotoxic CD4+ human T-cell clone directed at a
single minor histocompatibility antigen. The therapy,
however, was not sufficient to control extramedullary
relapses. Similar results were achieved by injection of
recall antigen (tetanus toxoid)-specific CD4+ human
T cells that were genetically modified to express the
mHag-specific T-cell receptor. Our results for the first
time show the sole effector function of CD4+ human
T cells against bone marrow tumors in cancer therapy.
Extramedullary relapses, however, remain a challeng-
ing issue towards effective cellular immunotherapy of
hem +
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se recently we and others have identified a series of
nd potentially therapeutic minor histocompatibility
ns (mHag) recognized by CD4+ T cells (14, 15). Fur-
ore, the in vivo antitumor capacity of TCR-modified
human T cells has never been explored. Therefore,
dressed the feasibility and efficacy of adoptive immu-
rapy with sole CD4+ mHag-specific native or TCR-
cted T cells.
this end we used a bioluminescence imaging (BLI)-
xenografted graft-versus-myeloma model, recently
ished in immune deficient Rag2−/−γc−/− mice that
, B, and NK cells. mHag+ human multiple myeloma
inoculated in these mice grew mainly in the bone
w. After the establishment of progressively expand-
edullary tumors, mice were depleted of macrophages
eated with native mHag-specific T cells or mHag-
ransduced TT-specific CD4+ T cells. The sole CD4+

therapy resulted in strong antigen-specific eradi-
of tumors in the bone marrow, showing for the

me a direct cytotoxic effect of adoptive immunother-
ith native or TCR-redirected dual-specific CD4+

n T cells. The CD4+ T-cell therapy, however, failed
trol extramedullary relapses, probably due to defi-
infiltration into tumor at extramedullary sites or
vement of tumor microenvironment–dependent
inhibitory mechanisms.

rials and Methods

human HLA-DPB1*0401-restricted mHag-specific

atologic malignancies with sole CD4 T cells.
T-cell clone 3AB11 and TT-specific CD4+ T-cell
were previously described in detail (12, 17). Clone

days p
via in

ancer Res; 16(22) November 15, 2010
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recognizes a yet unknown but potentially therapeu-
ag with hematopoietic-restricted tissue distribution

The oligoclonal TT-specific cell line CTLTT was estab-
by mixing four TT-specific CD4+ T-cell clones

AC6, NTT3AG10, NTT1A3, NTT1E10) in equal pro-
ns. All T cells were expanded using a feeder cell-
ne mixture as described (12). Luciferase-transduced
n multiple myeloma cell line UM9-luc-eGFP was de-
d elsewhere (18). UM9-luc-eGFP and EBV-LCL cells
cultured in RPMI-1640 (Invitrogen) supplemented
0% fetal bovine serum (Integro) and antibiotics. All
es were authenticated by means of human leukocyte
n-type and/or surface expression of appropriate re-
s within the last six months of research.

viral vectors and transduction of T cells
retroviral pMX vectors TCRα-IRES-ΔNGF-R and

-IRES-eGFP, carrying the TCRα and TCRβ chains of
3AB11, were described previously (12). The genera-
f retroviral supernatants, the retroviral transductions
-specific T cells, and the Fluorescent Activated Cell
(FACS) sorting (BD) based on eGFP and ΔNGF-R
sion were also described (12).

2−/−γc−/− mice were bred and housed Specified-
gen-Free at the Central Animal Facility of the Univer-
Utrecht (19). All animal experiments were conducted
ding to the Dutch Law on Animal Experiments
permission from the local Ethics Committee for
al Experimentation.

plantation and in vivo monitoring of tumor cells
ale mice at 9 to 14 weeks of age received 20 × 106

luc-eGFP cells via the tail vein one day after sublethal
ation (350 cGy). Tumor growth was quantitatively
tored after i.p. injection of beetle luciferin (2.5 mg;
ega) by either Biospace (Biospace Lab) or Roper
r Scientific) BLI systems (18). Arbitrary photon
s of both imaging systems were normalized for com-
n of different experiments. In untreated mice, the
luc-eGFP cells grow as a typical multiple myeloma
arly-phase growth in bonemarrow followed by some
tatic growth at extramedullary foci from 8 weeks on.

tive transfer and monitoring of T cells
ifferent levels of tumor intensity, mice were macro-
depleted by i.v. injection of fresh 2-chloromethyl
sphonate (CL2MDP) liposomes as described previ-
(20). One, three, and six days later the mice were
njected with CD4+ mHag-specific T-cell clone
1, TCR-transduced CTLTT (CTLTT-TCR), or the
tal control cell line CTLTT. In vivo monitoring of
-TCR in the mice was carried out by fluorescence
ng (Biospace Lab) up to seven days following i.p.
ion with 50 μg α-huCD4-ALEXA-700 (ITK). Two

rior to antibody injection some mice were boosted
jection of TT-loaded (7.5 LF/mL for 48 hours; NVI)
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− EBV-LCL cells (15 × 106 i.v., 2 × 106 s.c.). Flow
etry of single-cell suspensions from murine spleens
one using a FACS Calibur after staining with
ic conjugated antibodies (BD).

umoral treatment of extramedullary tumors
2−/−γc−/− mice were s.c. inoculated with 9 × 106

luc-eGFP cells at one flank. Three weeks after ino-
on, tumors were treated by intratumoral injections
4+ mHag-specific T-cell clone 3AB11 or TT-specific
(12 × 106 T cells per tumor; n = 5). Separate tumors
also injected with PBS (n = 5) as no-treatment
l. Tumor progression was monitored by BLI.

oxicity assay
9-luc-eGFP–derived tumors were dissected from
s foci of sacrificed mice. Single-cell suspensions
se tumors were then used as target cells in ex vivo
rase-based cytotoxicity assays in white opaque flat

96-well plates (Costar). Effector CD4+ T cells were
at different effector to target (E:T) ratios in the
ce of 125 μg/mL beetle luciferin (Promega). At 26
8 hours of culture, the light signal emitted from
ing UM9-luc-eGFP cells was measured using a
ometer (Molecular Devices). The percentage lysis
alculated relative to medium control as described
1). Tumor cells from bone marrow could not be
ted to cytotoxicity assays as they displayed poor
ity already after one hour of ex vivo culture.

tical analyses
aired two-tailed Student's t tests were used to analyze

ences between groups (GraphPad Prism software).
es <0.05 were considered significant.

lts

o multiple myeloma reduction by a native CD4+

n T-cell clone directed at a single mHag
revious studies, we had shown the in vitro cytotoxic
y of the mHag-specific Th1-like CD4+ human T-cell
3AB11 against the mHag+ human multiple myelo-
ll line UM9 (12). To determine its in vivo therapeutic
tial, we administered this cytotoxic CD4+ T-cell clone
mmunodeficient Rag2−/−γc−/− mice, bearing BLI-
able UM9-luc-eGFP tumors. Three consecutive injec-
of 3AB11 cells rapidly reduced the tumor load below
ion levels, showing for the first time the achievement
irect antimyeloma response by adoptive transfer of
human T cells (Fig. 1A and B). No tumor reduction
etected after administration of the control TT-specific
line (CTLTT), showing the antigen specificity of the
mor effect (Fig. 1A). Treatment of a similar tumor
ith 6-fold lower 3AB11 doses or a 3-fold higher

r load with similar T-cell doses was not effective
not shown), illustrating the importance of an opti-

-cell dose to tumor load ratio for a successful treat-
outcome.

of clo
(TT)-s

acrjournals.org

Research. 
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o antitumor effects of dual antigen-specific
ransduced CD4+ T cells
attractive way to generate sufficient number of
n-specific T cells for adoptive T-cell therapy is the
er of antigen-specific TCR into other T cells (22).
d previously shown that this approach is also highly
le to transfer mHag-specific cytotoxic functions

representative mice after 3AB11 treatment (top) or no treatment
) between day 13 and day 43.
In vivo antitumor effects of a native CD4+ T-cell clone 3AB11
d at a single mHag. A, UM9-luc-eGFP tumors were established
one marrow of Rag2−/−γc−/− mice by sublethal irradiation followed
injection of 20 × 106 tumor cells. Mice were depleted of
hages using CL2MDP liposomes one day prior to treatment,
ing of three consecutive i.v. injections (arrows) of 30 to 40 × 106

cells/mouse (n = 5; ○). As controls, mice were treated with
injections of CTLTT (n = 4; •) or not treated (n = 4;▪). Curves,
of UM9-luc-eGFP in the mice, measured by BLI of the ventral
bitrary units of the normalized photon emission counts). Arrows,
njections. Error bars, SE. At day 43, the difference compared
e untreated group was analyzed using a t test (***, P < 0.001).
minescence overlay pictures showing tumor outgrowth over
ne 3AB11 into readily expandable recall antigen
pecific CD4+ T cells (12). To investigate the in vivo

Clin Cancer Res; 16(22) November 15, 2010 5483
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mor activity of these dual-specific CD4+ human
, we transduced a TT-specific oligoclonal T-cell line
T) with the TCR of 3AB11. The TCR-transduced cell
esignated as CTLTT-TCR, displayed mHag-specific
xic activity against UM9-luc-eGFP in vitro (Fig. 2A
). Adoptive transfer of CTLTT-TCR into mice carrying
ished UM9-luc-eGFP tumors induced, similar to
tal 3AB11, significant mHag-specific reduction of
ultiple myeloma (Fig. 2C). This illustrated the feasi-
of establishing effective in vivo antimyeloma immu-
ot only by native mHag-specific T cells but also by
cific T cells transduced with the mHag-specific TCR.

marrow restriction of CD4+ T cell–mediated
mor effects
ical treatment of multiple myeloma by DLI is often
licated by extramedullary relapses (23–26). Similar
s clinical scenario, successful treatment with native
-specific CD4+ T cells in our model was compro-
with progressive outgrowth of multiple myeloma,
seemed to be predominantly located outside the

marrow (Fig. 3A). Indeed, locus-specific quantifica-
f the BLI data showed that the vast majority of origi-
mor loci in the bonemarrow remainedmyeloma-free
least five weeks, whereas extramedullary tumors
progressive (Fig. 3B). Dissection of sacrificed mice
ed that such tumors progressed mainly in ovaries
s.c. sites (Fig. 3C). Because these results could reflect
rapy-induced) resistance toward T cell–mediated
xicity, we dissected extramedullary tumors from
d and untreated mice and used their single-cell
nsions as targets for 3AB11. All extramedullary
cells derived from either treated or untreated mice
fficiently killed by 3AB11 (Fig. 3D), ruling out the

ility of a therapy-induced resistance of extramedullary could

ancer Res; 16(22) November 15, 2010

Research. 
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o persistence of dual antigen–specific T cells
alternative explanation for the extramedullary re-
could be the limited in vivo persistence of injected
s, a well-known caveat of current adoptive T-cell
er strategies. Supporting this possibility, analyzing
s of mice treated with dual antigen–specific CD4+

s could show the presence of CD4+ human T cells
4 but not at day 11 after T-cell injections (Fig. 4A)
FACS-based analyses. In similar assays, we also failed
ect human T cells in other main organs at this time
(data not shown). Nonetheless, because these results
not definitely exclude the possibility that a T-cell
ation was still persisting in the mice, we attempted
timulate and visualize the in vivo persisting cells by
d s.c. injection of TT-loaded EBV-transformed B cells
ys after the initial administration of dual antigen
g-TT)-specific CTLTT-TCR cells. Using in vivo fluores-
imaging, a technique sensitive enough for the track-
α-huCD4-ALEXA-700–labeled T cells at s.c. sites in a
ative way (Supplementary Fig. S1), we detected the
pecific T cells at the sites of s.c. TT-loaded EBV-LCL
on (Fig. 4B, left). There was no CD4+ T-cell accumu-
around unloaded mHag− EBV-LCL cells, which

s.c. injected in a separate mouse as negative control
B, right). In another experiment, we injected a mouse
erent s.c. loci with TT-loaded or unloaded EBV-LCL
and UM9 cells at day 43 after initial injection of
-TCR. Also in this mouse we observed a clear antigen-
ic accumulation of CD4+ T-cell signal at the s.c.
here TT-loaded EBV-LCL cells or UM9 cells were

ed but not at the sites of unloaded EBV-LCL cells
C). All together these assays indicated that (a) orig-
injected dual antigen–specific T cells could persist
erm in vivo in Rag2−/−γc−/− mice, and (b) these cells

migrate to s.c. extramedullary tissue in an antigen-
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In vitro and in vivo antitumor effects
TT- and mHag-specific TCR-
ced CD4+ T cells. A, eGFP
entative for TCRβ) and ΔNGF-R
expression on the untransduced
cific cells CTLTT (left) and on
nsduced cells after FACS sorting
TCR; right). B, specific lysis of
c-eGFP by CTLTT (•) or CTLTT-TCR
dicated effector to target (E:T) ratios
incubation for 26 hours. Results are
an percentage lysis. Error bars,
iplicate wells. Similar results were
d in two independent assays.
2−/−γc−/− mice with established
c-eGFP tumors in bone marrow
eated with 30 to 40 × 106 CTLTT
), CTLTT-TCR (n = 6;○), or not treated
) one day after CL2MDP liposome

tment. Arrows, days of i.v. T-cell
ns. Mean and SE of tumor
emission are shown per group.
B11-treated group was statistically
red with untreated group at day 36

0.001).
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edullary tumors could not be controlled even by
onal injections of mHag-specific T cells ∼22 days
rimary treatment (Fig. 4D). Finally, to investigate

hours. Error bars, SE. Similar results were obtained in two independent a
to eradicate extramedullary sites in the absence of
g-related issues, s.c. inoculated UM9 tumors were

lary tu
bypas
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d by intratumoral injections of 3AB11. As shown in
E, injection of 3AB11 into the tumor had no signifi-
ffect on the growth, indicating that the extramedul-
Extramedullary tumor outgrowth is not resistant to T cell–mediated kill in ex vivo analyses. A, tumor load of 3AB11-treated (top) or untreated
) mice at day 49 after injection of UM9-luc-eGFP. Note the outgrowth of extramedullary tumor in treated mice (arrows), whereas the original tumor
the bone marrow remain tumor-free. B, locus-specific photon emission was quantified for extramedullary sites (○) and for bone marrow (□) in
eated with 3AB11 at days indicated by arrows. C, 84 days after T-cell treatment, mice were dissected to visualize extramedullary tumor burdens
rase-positive locations. Pictures are representative examples for s.c. (top) and ovary (bottom) tumor relapses, present in respectively 40%
% of treated mice. D, single-cell suspensions of UM9-luc-eGFP extramedullary tumors were derived from different treatment groups 84 days after
mors remained resistant to T-cell therapy even after
sing the homing-related issues. These results strongly
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rt that the adoptive T-cell therapy was compromised
the extramedullary microenvironment by local reg-

y factors inhibiting the efficacy of T cells.

ssion
here show for the first time the in vivo cytotoxic anti-
r effect of sole CD4+ human T cells recognizing a

relaps
is also

ancer Res; 16(22) November 15, 2010
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multiple myeloma–associated mHag. We also show
irect antitumor effects can be achieved by adoptive
notherapy using recall antigen (TT)-specific CD4+

xic T cells that are genetically engineered to express
R recognizing the same single mHag. However, our
ic CD4+ T-cell therapy was not protective against
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6). Our results are relevant to improving cellular
mor immunotherapy in three ways:
t of all, our results show an important and addition-
of CD4+ T cells in anticancer immunity. Currently,
nerally entertained idea is that the CD4+ T cells con-
e to anticancer immunity mainly via activation of
upport to other immune cells (7, 10, 11, 27–30).
urrent dogma remains despite a substantial number
dies showing that Th1-like CD4+ T cells, especially
man origin, often display cytotoxic activity against
nt tumor cells (12–15). This resistance to recognize
portance of CD4+ T cell–mediated tumor cytotoxi-
likely due to the fact that most of the previous cyto-
ity studies were done in vitro but not in vivo.
ermore, in other in vivo studies involving CD4+

s, other effector cells were present, frequently pre-
g determination of the sole contribution of CD4+

s in clinical outcome. Fortunately, recent elegant
e studies have shown that naive tumor/self-specific
T cells can naturally differentiate into Th1 cytotoxic
in vivo and can cause regression of established mela-
independent of CD8+ T, B, and NK cells (16, 31). In
ith these observations for CD4+ murine T cells, we
rovide a strong indication for the establishment of
ti–human tumor effect due to direct cytotoxic effec-
nction of CD4+ human T cells in a model lacking T,
NK cells and depleted of macrophages prior to

infusions. Thus, in the light of our results, we think
D4+ T cells deserve to be included in clinical trials
or in combination with other effector cells.
nd, extending the results of several previous reports
rine experimental models (reviewed by Bendle et al.;
), our results show that the TCR-transfer approach
a highly valuable method to generate therapeutic

human T cells, as they, like their parental cells, exerted
ve antitumor effects in our model. A potential advan-
f inserting therapeutic TCRs into TT-specific T cells may
possibility to boost these therapeutic T cells via their
ic TCRs. Indeed, we showed the reactivation of long-
ersisting dual antigen–specific T cells by injections of
ded antigen-presenting cells; nonetheless, our model
ot allow us to test the potential advantage of this
y because our original sole CD4+ T-cell injections were
ghly effective against tumors residing in bone marrow
) could not control extramedullary relapses.
ally, an important observation in our study is the
pancy between the responses of bone marrow versus
edullary tumors after CD4+ cellular immunother-
e have been able to provide an optimal visualization
s phenomenon, because unlike several other tumor
ls, our bioluminescence model allows quantitative
ion of individual tumor loci at various tissues. In
odel, mice relapsed approximately 40 days after
injection, comparable with recurrences seen at the
al tumor site in several other models after an initial
ve T cell–based therapy (33–37). Although we have

een able to elucidate the exact mechanism of these
edullary relapses, we ruled out several known tumor
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mechanisms. Our results clearly show that the extra-
llary escape is not due to antigen or MHC downregu-
or development of an intrinsic resistance toward
mediated cytotoxicity because extramedullary tumors
d no ex vivo resistance toward lysis by mHag-specific
s (see Fig. 3D). In further experimentation we also
out mechanisms of impaired T-cell survival in vivo
fective T-cell homing to extramedullary sites (see
. Additional i.v. therapy or even intratumoral therapy
ramedullary tumors were also ineffective. It has been
by others that although T cells could traffic towards
edullary sites, the tumors present at those sites may
cape if the T cells fail to infiltrate them (38). Another
ility for extramedullary tumor escape is the inactiva-
f T cells due to local secretion of inhibitory factors.
n inhibitory factor could be the vascular endothelial
h factor, because its expression in ovarian cancer
an inverse correlation with the number of T cells

ating into the tumor microenvironment and it inhi-
-cell effector functions (39, 40). In fact, many other
le factors such as transforming growth factor β, pros-
din E2 and interleukin-10, as well as inhibitory
s such as PD-L1/2, CTLA-4 ligands, FASL, and tumor
sis factor–related apoptosis-inducing ligand have
shown to contribute to T-cell suppression within the
microenvironment (41–43). We are currently inves-
g the potential role of suchmechanisms in ourmodel
ining surface phenotype and function of transferred T
t extramedullary sites. Furthermore, it may be neces-
o investigate whether extramedullary relapses can
vented by combination of CD4+ human T cells with
effector cells of adaptive and innate immunity, such
8+ T cells or NK cells.
onclusion, our study indicates that native as well as
ransduced CD4+ human T cells can significantly con-
e to antitumor immunity via their cytotoxic capacity,
ially against tumors residing in the bone marrow.
results encourage the evaluation of their immuno-
eutic potency in clinical phase I/II trials.
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