




g-H2AX foci (24). Accordingly, Akt inhibitors efficiently
target GBM-SCs, determining a reduction of viable cells and
abrogating neurosphere formation (25).

DNA sensor and repair pathways act in concert with
apoptotic signaling to decide cell fate. Thus, the imbalance
of the apoptotic machinery toward an antiapoptotic state
favors cancer cell survival (26). Interleukin-4 (IL-4) is
known to amplify the expressionof antiapoptoticmediators
in different epithelial cancers (27). The chemotherapy-
resistant phenotype of CSCs seems to be sustained, at least
in part, by the release of IL-4 in a process that is abrogated by
either a neutralizing antibody or amutant formof IL-4 (28).
Because IL-4 can be produced in a number of tumors (29,
30), it is likely that other CSC types can exploit IL-4 to
counteract the cytotoxic activity of chemotherapeutic drugs.

The multidrug resistance (MDR) phenotype is a further
critical hurdle for chemotherapy efficacy. ABC drug trans-
porters are the main players in this phenomenon, because
they actively extrude from cancer cells a variety of structu-
rally and functionally unrelated drugs of natural origin
(31). Both normal stem cells and their malignant counter-
part express high levels of ABC pumps (32). In fact, the
ability of CSCs to actively exclude the HOECHST 33342
dye has been exploited to facilitate their isolation and
purification. These CSCs, defined as the side population
(SP) by the above-indicated assay, have been studied in
different malignancies, including acute myeloid leukemia
(AML) and neuroblastoma. The AML SP is characterized by
a greater proficiency in extruding daunorubicin and mitox-
antrone compared with the non-SP (33), and a similar
pattern has been documented for neuroblastoma stem-like
cells (34). Moreover, the doxorubicin-selected breast can-
cer cell lineMCF-7/ADR acquires stem-like properties and a
molecular portrait dominated by epithelial-to-mesenchy-
mal transition (EMT)-related and self-renewal–related
genes (35). The gain of this stem-like state is coupled with
the overexpression of both MDR-linked genes and the
cyclophosphamide-metabolizing enzyme aldehyde dehy-
drogenase 1.

A further mechanism involved in CSCs’ resistance to
chemotherapy is cell quiescence. In normal stem cells, a
prolonged exit from the cell cycle ensures the longevity of
adult tissues by ensuring that stem cells do not exhaust their
proliferative potential (36). Quiescent stem cells efficiently
repair DNA damage and reenter the cell cycle to reconsti-
tute the damaged tissue after exposure to cytotoxic injury
(37). In a malignant context, quiescent CSCs are mostly
spared by chemotherapy-induced cytotoxicity and are
therefore capable of reconstituting the original tumor.
Initial evidence connecting quiescence to CSC chemoresis-
tance comes from label-retaining approaches, indicating
that pancreatic adenocarcinoma label-retaining cells
(LRCs) encompass the operative criteria of CSCs and sur-
vive 5-fluorouracil treatment, unlike their non-LRC coun-
terpart (38). Similarly, putative ovarian CSCs display lower
proliferative activity, enhanced tumorigenicity in xenograft
models, and increased resistance to cisplatin compared
with the non-CSC fraction (39).

Indirect mechanisms of chemoresistance
The interplay between CSCs and the microenvironment

is a dynamic process that leads to the continuous remodel-
ing of both compartments. Experimental evidence con-
firms the critical role of the EMT in the development of
cancer metastases and chemoresistance. Recent findings
have demonstrated that EMT is induced by the activation
of a transcriptional complex influenced by different para-
crine-acting signals, including the self-renewal–associated
pathways Hedgehog (40), Notch (41), and Wnt (42). This
complex leads to radical cytoskeletal rearrangements cul-
minating in a switch toward a mesenchymal-like pheno-
type. Cells undergoing these morphofunctional changes
are typically located at the tumor-stroma interface, where
they gain prometastatic traits coupled with increased clo-
nogenicity and enrichment in stem cell-associated markers
(43).

In addition to the EMT, hypoxia is also emerging as a
critical regulator of the CSC pool. Hypoxia derives from
different cooperating factors, such as the chaotic and dys-
functional vasculature that supplies malignant tumors, and
poor oxygen diffusion within rapidly expanding neo-
plasms. Low oxygen tension activates the family of
hypoxia-inducible factors (HIFs), which trigger adaptive
changes at multiple levels, including the generation of new
blood vessels in the attempt to ensure sufficient oxygen and
nutrients (44). However, the abnormal architecture of
newly formed vessels limits drugs perfusion, leading to a
suboptimal concentration of chemotherapeutic agents
within the tumor. Besides this mechanistic hypoxia-
mediated drug resistance, direct evidence connects HIF
factors and CSCs. Cancer cells cultured under low oxygen
conditions or low pH express higher levels of stemness
markers, acquire a stem-like phenotype, and overexpress
stemness-related genes (45–47). Furthermore, based on
functional similarities between adult stem cells and their
malignant counterpart, it has been proposed that hypoxic
areas within a tumor act as niches for CSCs (48).

Clinical-Translational Advances

It is possible to speculate that different mechanisms of
chemoresistance are preferentially, if not exclusively,
responsible for distinct phases of cancer relapse and pro-
gression. The temporal pattern of disease recurrence that is
characteristic of many solid tumors suggests that the slow
replication kinetics of CSCs could account for the limited
efficacy of adjuvant chemotherapy in eradicating micro-
scopic residual disease. Conversely, altered mechanisms of
DNA repair, overexpression of ABC transporters, and
improper activation of antiapoptotic signaling may be
predominant during metastatic progression, when differ-
entiated tumor cells are killed by chemotherapy and resis-
tant CSCs are forced to reenter the cell cycle to numerically
restore the tumor population.

When chemotherapy-enhancing therapeutic approaches
are considered, attention often turns to agents that interfere
with DNA repair. Poly-ADP ribose polymerase (PARP)
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inhibitors are the prototype drugs of this class. The logic
behind the development of PARP inhibitors relies on the
concept of synthetic lethality, defined as the cooccurrence
of two genetic events that lead to cell death. To exploit this
concept, cancer cells that are defective for a specific DNA
repair pathway are exposed to compounds that inhibit a
different signaling avenue that partially overlaps the defec-
tive one. The combined (genetic and pharmacological)
abrogation of two redundant DNA repair pathways results
in an increased sensitivity of cancer cells to specific DNA-
damaging agents. Different PARP inhibitors have demon-
strated encouraging activity against tumors with inherent
defects in DNA repair, such as breast (49) and ovarian (50)
carcinomas harboring BRCA1 or BRCA2 germline muta-
tions. Chk1 inhibitors have also recently entered clinical
development in combination with gemcitabine, irinote-
can, and cytarabine. In the case of Chk1 inhibitors, the
principle of synthetic lethality involves the p53 tumor
suppressor: p53-defective cells are unable to undergo G1
arrest, and as a result depend on Chk1 to activate cell cycle
checkpoints in response to DNA-damaging agents (51).
Thus, in p53-defective CSCs, a synthetic lethality-driven
regimen should include a Chk1 inhibitor and a DNA-
damaging agent, even though the ability of Chk1 inhibitors
to preferentially kill p53-deficient cells is still debated (52).
Given the close relationship between DNA repair and
apoptosis, compounds that target antiapoptotic proteins,
such as Bcl-2 family member inhibitors, may be useful for
p53 wild-type tumors. With this approach, one can selec-
tively block sequential oncogenic activities by taking into
account the temporal and functional connections between
different therapeutic targets.
In addition to inhibiting various components of the

DNA repair pathway to potentiate the activity of alkylating
agents, investigators have developed inhibitors/modula-
tors of ABC drug transporters as chemosensitizers to
increase the intracellular levels of ABC pump substrates,
including taxanes, anthracyclines, and vinca alkaloids.
After the failure of first- and second-generation ABC inhi-
bitors, more-potent and specific third-generation antago-
nists have been synthesized and are currently undergoing
clinical development (32). Although direct proof of the
antitumor activity of such compounds is still lacking, ABC
inhibitors offer the possibility to block pumps distributed
in different body sites, such as the blood-brain barrier, thus
improving drug biodistribution within sanctuary sites.
A further strategy for eliminating CSCs entails the use of

differentiation-inducing agents that enhance chemosensi-
tivity while depleting the CSC pool. The prodifferentiation
activity of the bone morphogenetic protein 4 (BMP4) on
GBM-SCs may be exploited for the treatment of high-grade
gliomas (53). Likewise, BMP4 was recently shown to pro-
mote apoptosis, differentiation, and chemosensitization of
colon CSCs through the inhibition of PI3K/AKT (54). Of
note, the combined use of BMP4, 5-fluorouracil, and
oxaliplatin can induce tumor eradication in a CSC-based
model of colon cancer. Because the sequential use of
differentiating agents and chemotherapy has shown con-

siderable efficacy in acute promyelocytic leukemia (55), it
is likely that the increasing research on CSCs will promote
the use of similar strategies in solid cancers. In this context,
it is conceivable that protective signals coming from the
microenvironment could counterbalance the activity of
differentiation-inducing agents. Thus, we envision that
cotargeting intrinsic and extrinsic mechanisms associated
with CSC maintenance by combining differentiation-indu-
cing agents with antiangiogenic compounds or inhibitors
of EMT/hypoxia-associated effectors may lead to a greater
depletion of the CSC pool.

The ability to easily expand in vitro CSCs from several
solid tumors has radically modified the preclinical models
of human cancer based on cancer cell delivery in immu-
nocompromised mice. Many standard cancer cell lines
generate tumors whose phenotype appears extremely dif-
ferent from human tumors. It is likely that the orthotopic
transplantation of CSCs in the appropriate murine back-
ground will allowmore reliable testing of anticancer agents
by taking into account the specific molecular settings of the
tumor-initiating cells of each human malignancy (56, 57).
Such models are very flexible and may allow investigators
to test potential approaches for both adjuvant and meta-
static therapies.

In this regard, the discovery of CSCs has also brought
into question the general approach that is presently
employed to validate novel pharmacological compounds.
Currently, anticancer drugs are initially tested in metastatic
patients and, if found effective, are then moved to the
adjuvant setting. However, all evidence concerning CSCs
suggests that this approach may be conceptually wrong,
and that employing parameters of rapid tumor response,
evaluated in metastatic disease, may underestimate the
benefit of multiple drugs. On the one hand, it is likely
that inhibitors of paracrine-acting pathways could offer
considerable opportunities as adjuvant therapies targeting
minimal residual disease. On the other hand, compounds
producing rapid tumor shrinkage may be more suitable for
the metastatic or neoadjuvant setting. The lack of benefit
from bevacizumab (58) and cetuximab (59) as adjuvant
therapy in colorectal cancer patients, despite their pivotal
role in the management of metastatic disease, corroborates
this hypothesis. Likewise, a phase II study comparing
FOLFOX or FOLFIRI plus bevacizumab with or without
the Smoothened inhibitor GDC-0449 in patients with
metastatic colorectal cancer failed to reach its primary
endpoint (60), despite the encouraging activity of GDC-
0449 in tumors with activating mutations of the Hedgehog
pathway (61). Similar unsatisfactory results were observed
in a randomized placebo-controlled phase II trial with
GDC-0449 as maintenance therapy in advanced ovarian
cancer (62).

Finally, it is worth noting that efforts to develop che-
motherapy-enhancing agents aimed at eliminating CSCs
must take safety issues into account. To this end, research
efforts should be oriented toward a deeper characterization
of adult stem cells in order to avoid, or at least minimize,
the inhibition of crucial mechanisms for normal stem
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cell maintenance. This aspect is even more relevant when
anti-CSC drugs are considered for the treatment of pediatric
patients and young adults.
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