


3-kinase (PI3K)/Akt, mitogen-activated protein (MAPK)/
extracellular signal-regulated kinase (ERK), and Janus
kinase (JAK)/signal transducer and activator of transcrip-
tion (STAT; Fig. 1; refs. 11–14). In this context, serine-
threonine protein phosphatase 2A regulates CXCL12-
mediated chemotaxis and adhesion of human cord blood
HSCs through the Akt signaling pathway (15). Cross-talk
between CXCL12 and TGF-b signaling pathways controls
the cell cycling of HSCs by activating the PI3K/Akt/Foxo3a/
mammalian target of the rapamycin (mTOR) pathway
(16). In addition, by coupling with the Flt3 ligand, which
is known to promote HSC homing and proliferation,
CXCL12 facilitates the migration of HSCs via the MAPK,
cyclic adenosine monophosphate response element bind-
ing protein (CREB), and Akt pathway (17). Conversely,
CXCL12-mediated cell trafficking of HSCs is prevented by
inhibition of JAK2 (18). Consistent with this notion,
granulocyte colony-stimulating factor (G-CSF) mobilizes
HSCs from the marrow by degrading CXCL12 in the
marrow (19). The CXCR4 inhibitor AMD3100 is also
known to be an HSC mobilization agent (20). Conversely,
by inhibiting the activity of CD26 (DPPIV/dipeptidyl-
peptidase IV), a glycoprotein that is expressed on the sur-

face of many cell types which cleave CXCL12 [including
tumor cells where it has been shown to promote tumor
progression (21)], enhanced engraftment of HSCs during
bone marrow transplantation can be achieved (22).

DTCs are frequently found in the bone marrow (23).
Based on the molecular mechanisms related to the HSC
homing, it was recently reported that CXCL12/CXCR4 (or
alternative receptor CXCR7) chemokine axis also plays a
major role in the bone metastasis of prostate cancer (5, 6,
8–10). CXCL12 signaling through CXCR4 may trigger the
dissemination of prostate cancer by activating avb3 integ-
rins (cell surface receptors that play a role in adhesion,
migration, invasion, growth, and angiogenesis of tumor
cells; ref. 9) and CD164 (a sialomucin protein that med-
iates adhesive function and regulates hematopoiesis; ref.
24) expression in prostate cancer. In addition, CXCL12/
CXCR4 signaling participates in both metastasis and the
angiogenesis process of prostate cancer by downregulating
the expression and secretion of the glycolytic enzyme
phosphoglycerate kinase 1 (PGK1) and angiostatin (25).
Of importance, CXCL12 regulates the angiogenic pheno-
type in prostate cancer through CXCR4 (26). VEGF and
tissue inhibitor of metalloproteinase 2 (TIMP-2) secretion
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Figure 1. Conceptual scheme of a niche target therapy for bone metastatic disease. Bone metastatic DTCs target the osteoblastic niche where
HSCs reside and compete for occupancy of the niche with HSCs. Both DTCs and HSCs are believed to use similar mechanisms to gain access to the HSC
niche (e.g., CXCL12/CXCR4 axis and VLA-4/VCAM-1). The CXCL12/CXCR4 axis is believed to play major roles in the homing, adhesion, survival, and
proliferation of HSCs. Accumulating evidence suggests that, similar to HSCs, the CXCL12/CXCR4 axis is also involved in dissemination, adhesion, survival,
and growth of DTCs. CXCL12 activates several key survival signaling pathways (i.e., PI3K/Akt, MAPK/ERK, and JAK/STAT) in both HSCs and DTCs by binding
to its receptor, CXCR4. Herein, both HSCs and DTCs undergo growth arrest (also known as quiescence or dormancy) and are prevented from
undergoing apoptosis when they bind to the niche. This is why current therapies that target proliferating cells fail to eradicate DTCs. If the cell cycle of dormant
DTCs is accelerated by mobilizing them out of the niche with the use of HSC mobilizing agents (e.g., G-CSF and AMD 3100), the currently available
chemotherapies can be used to treat metastatic disease.
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is induced through the PI3K/Akt pathway, whereas
interleukin (IL)-6 and IL-8 secretion is stimulated through
the MAPK/ERK pathway (26). In fact, the metastasis and
growth of prostate cancer in bone were prevented by
blocking the CXCL12/CXCR4 pathway (6, 8, 10). There-
fore, this pathway is also likely to be involved in the bone
metastasis of other solid tumors (Fig. 1; ref. 4). Addition-
ally, both HSCs and prostate cancer bind to the adhesion
molecule annexin II expressed by osteoblasts, and blocking
annexin II or the receptor for annexin II prevents homing of
both cell types to the marrow (7, 27).
Another major role of the niche is to maintain HSC quie-

scence (11). Quiescence is important for HSCs to retain
their self-renewal ability. It was shown that the endosteal (or
osteoblastic) HSC niche maintains quiescent HSCs through
the pathway of Tie2 (the cell surface receptor for angiopoie-
tin) and its ligand angiopoietin-1 (Ang-1, a growth factor
that regulates angiogenesis) in the marrow (28). Moreover,
quiescent HSCs are thought to be localized close to the
endosteal region, which is extremely hypoxic (29). Recent
studies have shown that hypoxia-inducible factor-1a
(HIF-1a) is crucial for HSCs to undergo quiescent in endo-
steal region (30, 31). Likewise, metastatic tumors can exist
in a dormant state within such a hypoxic microenviron-
ment (32). Tumor cells are believed to become dormant to
escape from apoptosis and eventually proliferate (33, 34).
Several lines of evidence also show that bone marrow cells
facilitate the drug resistance ofDTCs (35, 36). A recent study
revealed that the bone marrow microenvironment facili-
tates drug resistance in multiple myeloma by enhancing the
IL-6–mediated STAT3 signaling pathway following adhe-
sion to b1 integrin (37). Once tumors become dormant,
they acquire an ability to evade the chemotherapeutic agent
or radiation that is currently targeting proliferating (or
dividing) cells. Although the mechanisms responsible for
this phenomenon remain unknown, these observations
indicate that both HSC quiescence and tumor dormancy
are regulated by the niche in a similar fashion (Fig. 1).
Using an in vivo micrometastatic model (38), Shiozawa

and colleagues (39) showed that disseminated prostate
cancer cells compete for occupancy of the osteoblastic
HSC niche with HSCs to create metastatic foci. They also
showed that disseminated prostate cancer cells competed
directly with transplanted HSCs for occupancy of the
osteoblastic HSC niche and that HSCs and prostate cancer
colocalized to the endosteal bone surfaces (39). A greater
number of disseminated prostate cancer cells could be
recruited into the vacant niche following the mobilization
of HSCs out of the niche (39). In addition, the number of
DTCs correlated closely with the number of osteoblastic
niches. When the osteoblastic niche was conditionally
compromised with skeletal tissues obtained from a trans-
genic mouse line in which the herpes thymidine kinase
gene was fused with the 2.3-kb fragment of the rat type I
collagen a1 promoter (40), fewer disseminated prostate
cancer cells were observed in micrometastatic assays (39).
Conversely, the expansion of osteoblastic niche with para-
thyroid hormone boosted the dissemination of prostate

cancer cells (39). Intriguingly, disseminated prostate cancer
cells pushed HSCs outward from the niche, and the cell
cycle in HSCs was accelerated, resulting in an increased
number of progenitor cells (39). Of more importance,
disseminated prostate cancer cells could be mobilized back
into the peripheral blood with the use of HSC mobilizing
agents such as G-CSF and the CXCR4 inhibitor AMD3100
(39).

These findings suggest that the osteoblastic HSC niche
serves as a specific component of the tumor ecosystem in
the marrow, and that this niche may be able to support
both tumor dormancy and HSC quiescence, and regulate
eventual tumor recurrence.

Clinical-Translational Advances

It is clear that existingmonotherapies are not sufficient to
eradicate tumor cells once they metastasize to organs.
Tumor cells are thought to acquire drug resistance by
interacting with the distant microenvironment. Based on
our recent observation (39), tumor cells that favorably
metastasize to bone target the bone marrow microenviron-
ment for HSCs (or HSC niche) and may be parasitic on
such a microenvironment to survive for an extended per-
iod. Therefore, the engagement of the HSC niche by DTCs
may induce dormancy, which protects DTCs from the
majority of the existing chemotherapeutic agents. Poten-
tially, interfering with adhesion molecules that link tumor
cells to the niche could be an attractive target to reverse
their drug resistance. A critical implication of the strategy to
target the HSC niche is that agents that induce HSCs to
leave the niche will also stimulate the cell cycle progression
of the released cells. If similar agents can be used to release
dormant DTCs from the marrow niche, then they, too, are
likely to be susceptible to existing chemotherapeutic agents
that target cells in the cell cycle.

CXCL12 and its receptor, CXCR4, are believed to play a
major role in HSC mobilization. CXCL12 is known as a
molecule associated with HSC homing, and the osteoblas-
tic niche is one of the major sources of CXCL12 in the
marrow (11). Hematopoietic growth factors, such as
G-CSF, have been widely used to mobilize HSCs into
peripheral blood (19, 41). G-CSF is thought to induce
HSC mobilization by degrading CXCL12 through the sti-
mulation of protease activities [e.g., neutrophil serine pro-
teases, cathepsins, elastase, matrix metalloproteinases
(MMP), and CD26; ref. 41]. G-CSF appears to regulate
HSC mobilization through actions on bone remodeling. A
recent study showed that G-CSF cleaves CXCL12 in the
marrow by enhancing the expression of MMP9 and cathe-
psin K in osteoclasts (42). It was also shown that G-CSF
reduces the levels of CXCL12 in the marrow by directly
inhibiting osteoblastic activity (43, 44). The blockade of
the receptor for CXCL12 has also been approved as an
agent for HSC mobilization. AMD3100, a CXCR4 antago-
nist, induces HSCmobilization inmice and humans, and it
exerts a synergistic effect on mobilization when admini-
strated with G-CSF (20). In addition, growing evidence
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suggests that the central nervous system participates in
HSC mobilization from the osteoblastic niche via the
CXCL12/CXCR4 axis (45–47). In addition to blocking
the CXCL12/CXCR4 axis, the degradation of other adhesive
interactions between HSCs and the niche has been used to
mobilize HSCs from the marrow (41). Therefore, a com-
bination of blockade of very late antigen-4 (VLA-4) with G-
CSF and/or AMD3100 dramatically augmented the effects
of both G-CSF and AMD3100 on HSC mobilization (48,
49). VLA-4 is an integrin family protein that is known to
bind to vascular cell adhesion protein 1 (VCAM-1), which
appears to play an important role in HSC homing. VLA-4/
VCAM-1 interactions seem to be independent of the
CXCL12/CXCR4 axis. Like AMD3100, G-CSF mobilized
disseminated prostate cancer cells from the niche into
the peripheral blood following the induction of MMP2/
9 and the enhancement of osteoclastic activity (39). These
findings suggest that therapies that target the HSC niche to
interfere with tumor-niche interaction are promising.

However, few therapies are available that target the bone
marrow microenvironment or HSC niche. AMD3100
enhances the chemosensitivity of acute myeloid leukemia
(AML; ref. 50) and multiple myeloma (51). Consistent
with this notion and our findings (39), AMD3100 increases
the mobilization of niche-engaged leukemia and myeloma
cells into the circulation and enhances their sensitivity to
chemotherapy (50, 51). Treatment with anti-VLA-4 anti-
bodies can also minimize tumor burden in AML in con-
junction with chemotherapy (52). Bone metastases of
breast and ovarian cancer were significantly prevented by
blocking integrin avb3 in an in vivo model (53). Other
approaches target osteoblastic IL-6 activity (54, 55), the
RANK/RANKL axis (56), and TGF-b signaling in bone
marrow stromal cells (57, 58).

Conclusions

The tumor ecosystem is a dynamic, complex, and evol-
ving environment. Interactions between tumor cells and
the surrounding host components provide multiple
options for therapeutic targets. Because one of the major
functions of the HSC niche is to induce growth arrest in its
occupants while supporting their self-renewal (11), tumor
cells that metastasize to bone may usurp the HSC niche to
become dormant and stay that way for years. If this is true,
it could partially explain why DTCs are sequestered from
current therapies. Although the mechanisms that regulate
the induction and release of tumor dormancy are poorly
understood, strategies that target theHSC niche tomobilize
DTCs using agents that mobilize HSCs would open up new
possibilities to eradicate incurable DTCs (Fig. 1).

Once a cancer patient’s tumor spreads to distant organs,
such as bone, the survival rate of that patient drastically
declines. Although significant progress has been made in
the early diagnosis and treatment of localized tumors, we
are still losing the battle against metastatic disease. Patients
with bone metastases and their families suffer physically,
emotionally, and financially for a long time. Simulta-
neously, the financial burden of health care is growing
steadily. Therefore, new approaches to cure cancer with
bone metastasis are urgently needed. We believe that the
concept of mobilizing DTCs out of the HSC niche using
HSC mobilizing agents prior to chemotherapy is highly
innovative and directly challenges existing paradigms.
However, some critical questions remain unresolved:

1. Why do DTCs target the osteoblastic HSC niche
during dissemination?

2. Do all DTCs become dormant?
3. Do specific osteoblastic HSC niche subtypes play a

role in tumor dormancy?
4. How do DTCs become dormant?
5. Do DTCs use the same mechanisms to become dor-

mant as HSCs use to become quiescent?
6. Can HSC mobilizing agents accelerate the cell cycling

of dormant DTCs?
7. Does DTC mobilization depend on a circadian

rhythm?
8. Are there any agents that canmobilize only DTCs and

not HSCs?

Atpresent, the roleof thebonemarrowHSCniche inDTCs
is not directly known. However, the answers to these ques-
tions would provide new cellular and molecular targets that
could be used as a niche-related therapy for bonemetastasis.
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