Radioimmunotherapy of Fibroblast Activation Protein Positive Tumors by Rapidly Internalizing Antibodies

Eliane Fischer1,2, Krishna Chaitanya1, Thomas Wüest1, Andreas Wadle1, Andrew M. Scott3, Marlies van den Broek1, Roger Schibli2, Stefan Bauer1, and Christoph Renner1

Abstract

Purpose: Fibroblast activation protein (FAP) is a serine protease that has emerged as a promising target for cancer therapy, either by direct abrogation of its proinvasive activity or by specific targeting of FAP-expressing cells with cytotoxic immunoconjugates. We aimed to select novel human–mouse cross-reactive antibodies and to test suitability for tumor therapy as radioimmunoconjugates in a preclinical model.

Experimental Design: Human Fab fragments that bind to human and murine FAP were selected from an antibody phage library. Two candidates (ESC11 and ESC14) were engineered into fully human IgG1 antibodies and further characterized. We investigated the intracellular trafficking of ESC11 and ESC14 in live cells by confocal microscopy and analyzed the biodistribution and therapeutic effects of anti-FAP antibodies labeled with the β-emitting radionuclide 177Lu in a melanoma xenograft nude mouse model. Results were compared with vF19, a humanized variant of an anti-FAP antibody that has been previously used in clinical trials.

Results: The two antibodies bound selectively to both human and mouse FAP, with affinities in the low nanomolar range. Binding to FAP-expressing melanoma cells resulted in rapid internalization of FAP-antibody complexes. 177Lu-labeled ESC11 specifically accumulated in melanoma xenografts in vivo, with a higher tumor uptake than ESC14 and vF19. Radioimmunotherapy with 8 MBq 177Lu-labeled anti-FAP antibodies delayed growth of established tumors, whereas 177Lu-ESC11 extended mouse survival more pronounced than 177Lu-ESC14 and 177Lu-vF19.

Conclusion: Our results show the potential of ESC11 and ESC14 as potent radioimmunoconjugates or antibody–drug conjugates for diagnostic and therapeutic use in patients with FAP-expressing tumors. Clin Cancer Res; 18(22); 6208–18. ©2012 AACR.

Introduction

Fibroblast activation protein (FAP) has emerged as a key player in cancer physiology with multiple biologic functions. Most prominently, FAP is highly expressed on carcinoma-associated fibroblasts where it is thought to contribute to cancer initiation, progression, and metastasis (1–3). In addition, FAP is also present in some cancer cells, including bone and soft tissue sarcoma (4) and some melanoma (5) cells. FAP is a type II transmembrane serine protease that gains its enzymatic activity upon homodimerization of 2 identical 97 kDa subunits (6, 7). The natural substrates of FAP are still not completely identified, but the protease is capable of cleaving N-terminal dipeptides from polypeptides with proline or alanine in the penultimate position (8) and also has collagenase activity (9–11). The dipeptidyl-peptidase activity of FAP is one of the mediators of tumor progression (12), extracellular matrix remodeling (13–18), and metastasis formation (10, 19), but recent studies strongly suggest additional effects of FAP in the absence of its enzymatic activity (20) by hitherto unclear mechanisms. Very recently, FAP-expressing stromal cells have been shown to suppress antitumor immunity (21), adding yet another aspect to the manifold contributions of FAP to tumor growth.

Because of this multifaceted influence on tumor physiology, its restricted expression pattern within diseased areas and correlation with poor clinical outcome in patients with cancer (22, 23), FAP has emerged as a promising target for cancer therapy. A humanized version of mAb F19 (sibrotuzumab), a first generation anti-FAP antibody, however,
Radioimmunotherapy by Internalizing FAP-Specific Antibodies

Translational Relevance
Carcinoma-associated fibroblasts in epithelial cancers and tumor cells of melanoma or sarcoma origin express high levels of fibroblast activation protein (FAP). In phase I/II clinical trials, first generation FAP-specific antibodies have shown high tumor-selective expression of this antigen. The novel antibodies described in this study, ESC11 and ESC14, rapidly internalize into FAP-expressing cells and exhibit excellent in vivo targeting properties. Therefore, they are ideal scaffolds for the development of immunoconjugates with cytotoxic drugs or radiometals that are retained within the cells. Our preclinical studies using a melanoma model serve as a basis for the clinical development of the ESC11 and ESC14 antibodies for targeting FAP-expressing tumor cells or carcinoma-associated fibroblasts. As both antibodies cross-react with rodent FAP, the relevance of preclinical studies is increased. Furthermore, translation to the clinic is facilitated because they are fully human antibodies.

Materials and Methods
Cells, cell lines, and reagents
HEK293huFAP, HEK293muFAP, and HEK293huCD26 were generated by cloning huFAP, CD26, or muFAP cDNA into the pEAK8 vector (Edge Biosystems) and stable transfection of HEK293 c-18 cells (ATCC CRL-10852) followed by monoclonalization by limited dilution. The cell lines were maintained in Dulbecco's modified Eagle's medium supplemented with 10% FBS, penicillin–streptomycin, and puromycin (3 μg/mL). HT1080 FAP+, huFAP-expressing HT1080 [American Type Culture Collection (ATCC) CCL-121], were maintained in RPMI supplemented with 10% FBS (Gibco, Invitrogen) and 200 μg/mL G418. Human melanoma cell lines SK-Mel-187 and SK-Mel-16 were kindly provided by Ludwig Institute for Cancer Research (New York) and maintained in RPMI 10% FBS. Murine antibody F19 and human anti-A33 antibody were obtained from Ludwig Institute for Cancer Research (Melbourne, Australia). Humanized vF19 was generated by veneering of F19 and was supplied by the Ludwig Institute for Cancer Research.

Antibody selection by phage display
For selection of huFAP-muFAP-specific antibodies, a nonimmunized phage library–expressing human antibody Fab fragments was used (29). Details of the selection procedure are outlined in the Supplementary Data.

Phage screening by ELISA
For screening of FAP-binding phage by ELISA, 96-well microtiter plates (MaxiSorp Nunc) were coated with cell extracts from HEK293 huFAP, HEK293 huCD26, HEK293 muFAP, or mock-transfected HEK293, blocked with 5% milk powder in PBS, incubated with phage-containing supernatants for 1 hour at room temperature, and developed using an anti-M13-HRP–conjugated antibody and tetramethylbenzidin as substrate.
Expression of Fab fragments

Fab fragments were produced in *E. coli* TG-1 by induction with 1 mmol/L isopropyl-l-thio-B-[scap)d]-[r]-galactopyranoside (IPTG) for 4 hours at 30°C. Soluble Fab was released from the periplasmic fraction by incubation in PBS, pH 8 at 4°C overnight. Crude fractions were incubated with Talon resin (CLONTECH Laboratories) for 1 hour at 4°C, washed with wash buffer (20 mmol/L Tris, 100 mmol/L NaCl, 0.1% Tween 20), eluted with 100 mmol/L imidazole, and dialyzed against PBS at 4°C overnight.

Determination of kinetic rate constants and affinity by surface Plasmon resonance

Binding analysis of Fabs was conducted on a BIAcore T100 instrument. Recombinant huFAP (R&D systems) was immobilized at low density on a CM5 sensor chip according to the manufacturer’s instructions. ESC11 and ESC14 Fab were injected in 10 mmol/L HEPES, pH 7.4, 3.4 mmol/L EDTA, 0.15 mmol/L NaCl, and 0.05% Tween 20 at a flow rate of 80 μL/min at 25°C, and concentrations ranging from 0.5 to 16 mmol/L and 6.25 to 200 mmol/L, respectively. The sensor chip was regenerated between injections with 0.1 mol/L sodium carbonate and rate constants were calculated using BLAevaluation data analysis program.

Cloning, expression, and purification of IgG1

The variable sequences of heavy and light chain were cloned via VαI and BarII sites, respectively, into a modified pEE12.4 vector (CLONTECH Laboratories) for 1 hour at 4°C, washed with 2% paraformaldehyde for 10 minutes on ice before the experiment at a final concentration ranging from 0 to 100 μmol/L and 0 to 10 μmol/L, respectively. Cells were fixed with 4% paraformaldehyde on ice and permeabilized using Cytofix/Cytoperm solution (51-2090KZ; BD Biosciences). Primary antibodies were diluted in 1× Perm/Wash (51-2091KZ; BD Biosciences) at following dilutions: EEA1, 1:100 (2411; Cell Signaling Technologies), LAMP1, 1:1,000 (ab24170; Abcam), F19, 1:100. All secondary antibodies were used at a 1:200 dilution no. 109-485-003; 1:200 dilution). Quantification of cell-surface FAP in internalization experiments was conducted after overnight incubation with human IgGs at 37°C. Cells were then stained with 10 μg/mL F19 followed by anti-mouse FITC-conjugated antibody and % FAP expression was calculated relative to the mean fluorescence intensity of cells that have not been incubated with human IgG. In case of vF19, directly labeled ESC11 (DyLight 549) was used to detect cell-surface FAP.

Confocal microscopy

Cells were seeded on sterile 20 mm fibronectin-coated (Sigma F1141-1MG, at 10 μg/mL) coverslips (Deckglaser; Carolina Biological) in 12-well plates and grown to 20 to 30% confluency. Cells were fixed with 2% paraformaldehyde on ice and permeabilized using Cytotfix/Cytoperm solution (51-2090KZ; BD Biosciences). Primary antibodies were diluted in 1× Perm/Wash (51-2091KZ; BD Biosciences) at following dilutions: EEA1, 1:100 (2411; Cell Signaling Technologies), LAMP1, 1:1,000 (ab24170; Abcam), F19, 1:100. All secondary antibodies were used at a 1:200 dilution and were obtained from Jackson Immunoresearch. Dynasore hydrate (D7693; Sigma) and 5-(N-ethyl-N-iso-propyl) amiloride (EIPA; A3085; Sigma) were added 30 minutes before the experiment at a final concentration ranging from 0 to 100 μmol/L and 0 to 10 μmol/L, respectively. Cells were fixed with 4', 6-diamidino-2-phenylindole (Invitrogen). All images were acquired on Leica SP5 UV/Vis confocal microscope (Leica Microsystems) at the Center for Microscopy and Image Analysis (University of Zurich, Zurich, Switzerland) using LAS AF software. Images were kept in 1024 × 1024 formats and acquired with a zoom factor of 4 at 700 Hz frequency with HCxAPO Lambda blue 63.0× oil UV objective lens at a numerical aperture of 1.40. Images were stored in Tagged Image File Format (TIFF) and further processed using Image J software.

For internalization experiments, cells were incubated with 30 μg/mL human IgGs for the indicated time. FAP was then detected with F19 and DyLight 549 anti-mouse antibody, (Jackson Immunoresearch, cat. no. 115-506-062; 1:200 dilution). After incubation with vF19, FAP was detected with directly conjugated ESC11-DyLight 549. Alternatively, internalization was directly induced and monitored by DyLight 549-conjugated human IgG1 (30 μg/mL).

Radiolabeling and quality control

Antibodies were labeled with 117Lu using the chelator CHX-A-DTPA (N-([R-2-Amino-3-[(p-isothiocyanato-phe- nyl)propyl]-trans-S,S]-cyclohexane-1,2-diamine-N,N,N', N'-pentaacetic acid, B355; Macrocyclics). Conjugation was conducted in borate buffer (0.07 mol/L, pH 9.15) under metal-free conditions and using a 5-fold molar excess of CHX-A-DTPA. The reaction mixture was incubated for 1 hour at 37°C. For all antibodies, 0.5 to 1 moles CHX-A-DTPA, were coupled per one mole IgG1, as determined by incubation of a fixed amount of conjugated antibody with

Published OnlineFirst September 19, 2012; DOI: 10.1158/1078-0432.CCR-12-0644

Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2012 American Association for Cancer Research.
increasing amounts of 111In (Mallinkrodt). The conjugated antibody was separated from free CHX-A$^\text{-}$DTPA using a NAP-5 column equilibrated with ammonium acetate buffer (0.25 mol/L, pH 5.5). CHX-A$^\text{-}$DTPA-antibody conjugates were labeled with 177Lu (177LuCl$_3$ in 0.04 mol/L HCl, ITG Isotope Technologies Garching-GmbH) for 1 hour at 37°C.

The reaction was quenched with 5 mmol/L EDTA and after 5 minutes of incubation at 37°C, the radiolabeled antibody was purified on a Superose-12 FPLC column (Amersham Biosciences). Elution was carried out in PBS at a flow rate of 0.5 mL/min. Radiochemical purity was analyzed by fast protein liquid chromatography (FPLC). The immunoreactive fraction was determined on H1080 FAP cells using the Lindmo method as previously described (30).

SPECT/CT

Post mortem SPECT scans (2 hours 180 seconds/view) were conducted with a 4-head multiplexing multipinhole camera (NanoSPECT/CT; Bioscan Inc.) 72 hours after injection of 177Lu-CHX-A$^\text{-}$DTPA-IgG1 (8 MBq, 15 μg) into the tail vein of nude mice bearing an SK-MEL-187 tumor on the hind leg and an SK-MEL-16 tumor on the shoulder. SPECT data were reconstructed iteratively with HiSPECT software (SciVis GmbH). The fused SPECT and CT datasets were analyzed using InVivoScope post processing software (Bioscan Inc.).

Biodistribution of 177Lu-labeled antibodies in nude mice bearing human FAP-positive SK-Mel-187 tumors

Female nu/nu mice (Charles River) were injected subcutaneously in the right hind leg with 5×10^6 SK-Mel-187 cells in RPMI: BD Matrigel (cat. 354248; BD Biosciences) = 1:1 in a final volume of 200 μL. Tumors were allowed to grow to approximately 200 mm3 before animals were randomly divided into groups of 6 mice for biodistribution studies (4 mice for time-dependent biodistribution of 177Lu-ESC11). Four micrograms (3 MBq) of each radiolabeled antibody was injected intravenously in 100 μL PBS. Animals were sacrificed by cervical dislocation. Radioactivity for each organ was measured using a gamma counter. The experiments were approved by the local ethics committee for animal research.

Radioimmunotherapy with 177Lu-labeled antibodies in nude mice bearing SK-Mel-187 tumors

Mice were injected subcutaneously with 5×10^6 FAP-positive SK-Mel-187 cells as described above and randomized into groups of 7 to 8 mice. 8 MBq radiolabeled antibody (100 μL in PBS, 15–17 μg) or 100 μL PBS was injected into the tail vein 5 days after tumor cell implantation. Tumor growth was measured every 2 to 3 days with a caliper and tumor volumes were calculated according to the formula: volume = length × width2 × 0.52. Animals were sacrificed when tumor volumes exceeded 1,000 mm3. Additional mice were sacrificed 3 and 7 days after treatment with 8MBq^{177}Lu-ESC11 or 177Lu-A33 and tumors were processed for immunohistochemistry.

Immunohistochemistry experiments

Whole sections (3 μm thickness) were cut from formalin-fixed, paraffin-embedded blocks. Tissues were mounted on glass slides and deparaffinized in xylene. Rehydration was carried out in decreasing concentrations of ethanol and stained with hematoxylin–eosin using standard histologic techniques. Ki-67 immunohistochemistry was conducted using the automated Bond Max platform (Leica Microsystems) with a rabbit monoclonal MIB-1 antibody (1:200; clone SP6, Neomarkers, LabVision). Heat-induced epitope retrieval pretreatment was conducted using H2-Buffer (Leica Microsystems) and boiling at 95°C for 30 minutes. Bound antibody was detected with a corresponding secondary antibody included in the Refine-DAB detection kit (Leica Microsystems).

Statistical analyses

Data were analyzed using Prism (version 5.01) software (Graph Pad). Survival times were analyzed by Kaplan-Meier analysis, followed by the log-rank test. To correct for multiple comparisons of survival times, the Bonferroni-corrected threshold was applied to determine significance.

Results

Selection and characterization of mouse–human FAP cross-reactive antibody Fab fragments

Monoclonal antibody Fab-fragments were selected from a large human Fab antibody library by phage display. The first 4 panning rounds were conducted on human FAP (huFAP; Supplementary Fig. S1). Enrichment for Fab-fragments that crossreacted with mouse FAP (muFAP) was conducted in the fifth panning round (Supplementary Table S1). Screening of 300 selected clones by ELISA followed by PCR fingerprinting and sequencing of FAP-specific binders (data not shown) led to the identification offabs ESC11 and ESC14. By ELISA, both Fab fragments specifically bound to huFAP and muFAP and did not crossreact with the homologous protein CD26 (Fig. 1A). Furthermore, Fab ESC11 and ESC14 bound to native FAP on the cell membrane of muFAP or huFAP-expressing cells (Fig. 1B). The binding affinity to recombinant huFAP was determined by surface plasmon resonance measurement using chips coated with a low density of huFAP. KD_{app} values of 10 ± 5 nmol/L and 210 ± 35 nmol/L were calculated for Fabs ESC11 and ESC14, respectively (Fig. 1C). Similar affinities were determined by flow cytometry with calculated KD_{app}s on huFAP-expressing cells of 4.7 ± 1.6 nmol/L for ESC11 and 200 nmol/L for ESC14, respectively (Table 1). On muFAP-expressing cells, KD_{app}s were 51 ± 11 nmol/L for ESC11 and 251 ± 42 nmol/L for ESC14 (Table 1).

Preparation and characterization of IgG1 antibodies ESC11 and ESC14

The variable heavy chain and light chain domains of ESC11 and ESC14 were cloned and expressed as fully human IgG1. IgG1 was purified by affinity chromatography from cell culture supernatant to more than 95% purity (Supplementary Fig. S2). As expected, the binding affinity
of bivalent IgG1 for huFAP was higher than that of monovalent Fab due to avidity effects with apparent K_D values around 1.1 nmol/L on huFAP for both ESC11 and ESC14 IgGs (Table 1). These binding affinities are about 4-fold higher than for vF19 IgG. Interestingly, affinity constants of both ESC11 and ESC14 for muFAP were similar (around 2 nmol/L) after conversion to IgG1.

Epitope mapping by competitive binding assay
To investigate whether ESC11 and ESC14 recognize different epitopes of FAP, we used ESC11 to compete with ESC14 or F19 for binding to native surface human FAP and vice versa followed by flow cytometry. Binding of ESC11 Fab could be blocked by ESC14 IgG and vice versa, whereas F19 (28) did not compete with either of the ESC antibodies for FAP binding (Supplementary Fig. S3). These results suggest that antibodies ESC11 and ESC14 recognize the same epitope or overlapping/spatially close epitopes that are different from the epitope recognized by the F19 antibody.

ESC11 and ESC14 IgG1 induce downmodulation and internalization of surface FAP
Incubation of SK-MEL-187, a FAP-expressing melanoma cell line, with F19, ESC11, or ESC14 on ice resulted in detectable surface staining. However, incubation at 37°C for 3 hours with ESC11 or ESC14, but not with F19, induced internalization of FAP-antibody complexes (Fig. 2A and B). This was not observed with monovalent Fabs indicating that cross-linking of FAP molecules by bivalent IgG1 was essential (data not shown). Internalization of surface FAP occurred very rapidly. Already after 20 minutes at 37°C, an almost complete colocalization of internalized antibody with early endosomes could be observed, whereas after 40 minutes, colocalization with LAMP-1, a marker for late endosomes and lysosomes (Fig. 2C) was seen. We next tested pharmacologic inhibitors of both dynamin-dependent endocytosis (dynasore) and macropinocytosis (EIPA)

Table 1. Apparent affinities of anti-FAP antibodies on huFAP and muFAP.

<table>
<thead>
<tr>
<th>antibody type</th>
<th>K_D [nmol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>huFAP</td>
<td></td>
</tr>
<tr>
<td>muFAP</td>
<td></td>
</tr>
<tr>
<td>ESC11 Fab</td>
<td></td>
</tr>
<tr>
<td>ESC14 Fab</td>
<td></td>
</tr>
<tr>
<td>ESC11 IgG</td>
<td></td>
</tr>
<tr>
<td>ESC14 IgG</td>
<td></td>
</tr>
<tr>
<td>vF19 IgG</td>
<td></td>
</tr>
</tbody>
</table>

Fischer et al.
Clin Cancer Res; 18(22) November 15, 2012
to investigate the mechanism of endocytosis. Dynasore inhibited antibody-mediated FAP internalization (Supplementary Fig. S4A), whereas EIPA had no effect (Supplementary Fig. S4B), showing that endocytosis is mediated by a dynamin-dependent mechanism.

After overnight incubation with ESC11 and ESC14 antibodies, only very little FAP was detectable by flow cytometry on the surface of SK-MEL-187 cells. In contrast, still around 80% of cell-surface FAP could be detected after prolonged incubation with vF19 (Fig. 3A). We next investigated the time and concentration dependency of the observed FAP downmodulation for ESC11. Overnight internalization was concentration dependent and the half-maximal effective concentration (EC50) was 3.3 ± 0.5 nmol/L (Fig. 3B). At this concentration, most of the FAP epitopes are occupied by ESC11 antibody, which presumably results in rafting of FAP molecules and concomitant internalization. To assess time dependency, we then chose a concentration of 200 nmol/L at which FAP downmodulation is expected to be more than 90%. FAP was rapidly internalized, and the majority of FAP molecules disappeared from the cell surface within 1 hour (Fig. 3C). When excess antibody was removed after overnight incubation, full FAP expression was restored not before 3 days after antibody removal (Fig. 3D). In contrast, FAP expression remained low when ESC11 was present over the entire observation period.

mAb ESC11 specifically accumulates in human melanoma xenografts in vivo

ESC11, ESC14, vF19, and A33 were conjugated with CHX-A′-DTPA and subsequently labeled with 177Lu. Radiochemical purity was more than 95% by FPLC for all 4 antibodies, and the specific activities were 0.4 to 0.45 MBq/μg. Immunoreactivity of the radiolabeled antibodies was between 50% and 70% as determined by Lindmo analysis. All 3 177Lu-labeled FAP-binding antibodies bound specifically to SK-MEL-187 cells and could be displaced with increasing amounts of unlabeled antibody, whereas only a low amount of nonspecific binding could be observed on the FAP-negative SK-MEL-16 cells (data not shown). Accordingly, SPECT/CT imaging 72 hours after injection showed high and specific uptake of 177Lu-ESC11 in the SK-MEL-187 tumor (Fig. 4A), but low uptake in a SK-MEL-16 xenograft. Specific uptake was also observed with 177Lu-vF19 in the FAP-expressing tumor (Fig. 4B), whereas the control antibody 177Lu-A33 did not accumulate in either tumor (Fig. 4C).

Biodistribution data showed very high uptake of the 3 antibodies in FAP-expressing tumors 72 hours after injection and low activity in nontargeted organs (Fig. 4D). Notably, 177Lu-vF19 and, to a lesser extent, 177Lu-ESC14 showed higher accumulation in the spleen than 177Lu-ESC11, and cleared faster from the blood, which resulted in a reduced uptake in the tumors.

The in vivo biodistribution of 177Lu-ESC11 was further studied over time in nude mice bearing human SK-MEL-187 tumor xenografts. We found a high (36% of the injected dose per gram of tumor tissue after 48 hours) and prolonged uptake of 177Lu-ESC11, whereas its presence in blood and other organs was relatively low (Fig. 4E). Radioactivity in melanoma xenografts accumulated until approximately 48 hours after injection. After this time point, uptake values in the tumors remained high,
but also became more variable in the individual mice, most likely due to the inhomogeneous tumor growth observed for this tumor model.

Radioimmunotherapy of established melanoma xenografts with 177Lu-labeled FAP-specific antibodies

Next, we investigated the therapeutic efficacy of a single dose of the 177Lu radioimmunoconjugates in vivo. We estimated a dose of 8 MBq to be therapeutically active (31) and this dose has been shown to be well below the maximum tolerated dose in this mouse strain with other antibodies displaying similar biodistribution properties. Eight MBq (15 µg) 177Lu-labeled antibodies were injected intravenously into nude mice bearing established subcutaneous human melanoma tumors (~150 mm³) 5 days after tumor implantation. Tumor growth was delayed with all 3 anti-FAP antibodies and 177Lu-ESC11 exhibited the most pronounced growth delay (Fig. 5A). Analysis of survival curves (Fig. 5B) showed an increase of median survival from 18 days (177Lu-A33) to 32 days (177Lu-vF19), 43 days (177Lu-ESC14), and more than 43 days (177Lu-ESC11) after tumor implantation. Additional mice were sacrificed on day 0, 3, and 7 after injection of radioimmunoconjugates, and tumor specimens were processed for immunohistochemistry. We found a substantial reduction of proliferating (Ki-67⁺) tumor cells in samples taken after 3 and 7 days after injection of 177Lu-ESC11 but not of the control conjugate (Fig. 5C). In addition, we observed increasing cell-free areas over time in the tumors treated with radiolabeled ESC11 (Fig. 5D).

Discussion

We here describe the selection of novel human–mouse FAP-specific antibodies which downmodulate FAP expression from the surface of tumor cells, thus converting them into FAP-negative cells. Therapeutic strategies that aim at the complete downmodulation of FAP expression from the cellular surface might be promising approaches per se, as FAP is involved in cell invasion and metastatic processes of many cancers. Thus, antibody-induced internalization of
Figure 4. Biodistribution of 177Lu-labeled FAP-specific antibodies. Post mortem SPECT/CT images showing biodistribution of (A) 177Lu-CHX-A00-DTPA-ESC11, (B) 177Lu-CHX-A00-DTPA-vF19, and (C) 177Lu-CHX-A00-DTPA-A33 in nude mice 72 hours after injection. D, biodistribution of 177Lu-labeled antibodies in mice bearing SK-Mel-187 xenografts 72 hours after injection. 177Lu-ESC11 (black bars), 177Lu-ESC14 (striped bars), 177Lu-vF19 (grey bars), and 177Lu-A33 (white bars). E, time-dependent biodistribution of 177Lu-ESC11 in mice bearing SK-Mel-187 xenografts after 3 hours (black bars), 24 hours (striped bars), 48 hours (grey bars), and 7 days (white bars). Results are presented as percentage of injected dose per gram of tissue. Error bars represent SD (n = 4; D).
cell surface–expressed FAP could provide major therapeutic impact by disturbing the various interactions on the cellular membrane, for example, the formation of functional invadopodia. But more importantly, the rapid internalization renders them perfect carrier proteins for the targeted destruction of FAP positive carcinoma-associated fibroblasts or tumor cells. These approaches have the potential to be much more efficient than therapy with naked antibodies (32). While internalization of the antibody is not a prerequisite for successful radioimmunotherapy with a β-particle emitting radionuclide like 177Lu, it becomes a clear advantage when using α-particle or Auger-electron emitting radionuclides instead. In these cases, the vicinity of the internalized radionuclide to the cellular nucleus augments the therapeutic efficacy by introducing more damage to the radiation-sensitive DNA. Antibody–drug conjugates are a second example for which internalization is an important feature, especially when the drug is coupled to the antibody by an acid-labile linker releasing the cytotoxic drug in the acidic lysosomes.

We have chosen human melanoma as a model system because the interaction between tumor cells and carcinoma-associated fibroblasts seems to be crucial for tumor growth and the development of drugs resistance (33). As shown by Flach and colleagues, melanoma cells stimulate the recruitment of fibroblasts and activate them by a so far unknown mechanism. In turn, these activated fibroblasts contribute to melanoma progression by providing both structural and chemical support (33). Incomplete abolishment of tumor cells by a short duration of kinase inhibitor therapy led to a transient reduction of tumor cells that was counteracted by an accelerated regrowth of tumor cells supported by the large fibroblast population that remained posttreatment. According to their model, the sole elimination of tumor cells is insufficient to provide tumor control and only a combined approach targeting tumor cells and carcinoma-associated fibroblasts simultaneously will lead to long lasting remissions.

FAP is not ubiquitously expressed in human melanoma at all stages of disease but is transiently present during the development of malignancy, and is routinely confined to the stromal fibroblasts in metastatic melanoma (34). However, high expression levels of FAP have been shown to correlate with a pronounced invasive phenotype in vitro (35) and have recently been postulated to contribute to transmigration of melanoma cells through the blood-brain barrier (36).

In this study, we compared the in vivo targeting properties of the human–mouse cross-reactive antibodies ESC11 and ESC14 to vF19. In a model with relatively high antigen expression on the tumor cells, high accumulation of up to 50% of the injected dose per gram tumor was observed. The only previously reported biodistribution experiment with a FAP-targeting antibody in mice was a study with human skin-grafted SCID mice bearing breast cancer tumors and 131I-labeled antibody (37). There, much lower accumulation in the tumor and less favorable tumor-to-organ ratios were achieved, presumably as a result of the tumor model and the choice of the metabolically less stable radiolabel. In phase I clinical trials, 131I-labeled mAb F19 and its CDR-grafted humanized variant have been used to study pharmacokinetics, biodistribution, and imaging characteristics in patients with metastatic cancer (25, 38, 39). FAP was efficiently targeted by mAb F19 in all patients and its expression was confined to the stroma of metastatic lesions. Given the high expression of FAP in human cancers and the
restriction to diseased tissue, FAP is a promising target both for imaging and radioimmunotherapy.

In particular, targeting stromal fibroblasts instead of tumor cells has several appealing advantages: the highly vascularized stroma is thought to be reached more efficiently by bulky molecules such as monoclonal antibodies. Antigen expression is considered to be more stable in carcinoma-associated fibroblasts than in highly proliferating cancer cells.

Furthermore, in many human epithelial cancers, stromal fibroblasts are highly abundant, and the cross-fire effect of low energy β-emitting radionuclides (penetration of 2 mm in tissue) additionally contributes to the eradication of antigen-negative tumor cells and to a homogenous deposition of the dose within the tumor tissue. A recent study showed that antitumor immunity is suppressed by FAP-positive stromal cells (21), which adds to the importance of the dose within the tumor tissue. Therefore, the dose within the tumor tissue. Thus, human–mouse cross-reaction positive stromal cells (21), which adds to the importance of the dose within the tumor tissue. Therefore, human–mouse cross-reaction positive stromal cells (21), which adds to the importance of the dose within the tumor tissue.

In conclusion, we have developed novel fully human antibodies with excellent in vivo targeting properties. Because of their efficient internalization and targeting to the lysosomes, they are promising scaffolds for future development of antibody–drug conjugates or radioimmunotherapeutics.

References

Tumors by Rapidly Internalizing Antibodies

Radioimmunotherapy of Fibroblast Activation Protein Positive Tumors by Rapidly Internalizing Antibodies

Eliane Fischer, Krishna Chaitanya, Thomas Wüest, et al.