






In healthy cells, HMGB1 is found primarily in the nucle-
us, where it stabilizes chromatin and plays multiple roles in
DNA transcription, replication, and recombination.During
programmednecrosis, HMGB1 translocates from the nucle-
us to the cytosol and the extracellular space, where it binds
several proinflammatory molecules and triggers the inflam-
matory responses that distinguish this type of cell death
from apoptosis. These findings provide mechanistic links
between asbestos-induced cell death, chronic inflamma-
tion, and mesothelioma. Secreted HMGB1 stimulates
RAGE, TLR2, and TLR4 (the 3 main HMGB1 receptors)
expressed on neighboring inflammatory cells such as
macrophages and induces the release of several inflamma-
tory cytokines, including TNF-a and IL-1b. In addition,
HMGB1 enhances the activity of NF-kB, which promotes
tumor formation, progression, and metastasis (42). An
investigation into the targeting of extracellular HMGB1 as
a novel strategy for mesothelioma prevention and/or ther-
apy is currently underway (43). As illustrated in Fig. 1, we
hypothesize that HMGB1 functions as a master switch that
initiates a series of inflammatory responses leading to
malignant transformation of asbestos- or erionite-damaged
HMCs.

Clinical–Translational Advances

Molecular therapies
Although increased expression of EGFRhas beennoted in

human mesothelioma, a phase II clinical trial of the EGFR
signaling inhibitor gefitinib yielded disappointing results
(44). Because RTKs are frequently activated in mesothelio-
ma, investigators tested the possible benefits of small-mol-

ecule RTK inhibitors, including erlotinib and imatinib
(Fig. 2). However, the results of such studies to date have
not been promising (45, 46). The accumulation of cyto-
plasmic b-catenin, a downstream component of the Wnt
signaling pathway, in the majority of human mesothelio-
mas indicates that Wnt signaling is abnormally activated
(47). Moreover, the dishevelled proteins (also downstream
of Wnt) are often overexpressed in mesothelioma, and
siRNA knockdown of dishevelled proteins was shown to
suppress mesothelioma growth (48). These data suggest
that agents that target components of the Wnt signaling
pathway could benefit mesothelioma patients. The inverse
correlation between VEGF serum levels and mesothelioma
patient survival (49) suggests that VEGF signaling contri-
butes to mesothelioma. However, a phase II clinical trial of
the humanized anti-VEGF monoclonal antibody bevacizu-
mab plus erlotinib (Fig. 2) in mesothelioma patients
yielded no clinical benefits (50). PI3K, AKT, and the down-
stream mTOR are often found to be activated in mesothe-
lioma, and inhibition of mTOR using rapamycin enhances
the apoptosis of mesothelioma cells in vitro (22), which
suggests that mTORmay serve as a target for mesothelioma
therapies (Fig. 2). TheNF-kB signaling pathway is critical for
the pathogenesis of mesothelioma. Therapies aimed at
inhibiting NF-kB activity, such as ranpirnase and bortezo-
mib, may benefit a small subset (10%) of patients (51–53).

Molecular therapies that target aspects of tumor immunity
may also have a significant impact on the course of meso-
thelioma because the altered microenvironment will affect
the ability of the immune system to mount antitumor
responses. Sterman and colleagues (54) led several clinical
trials examining the effects of intrapleural delivery of type I

Figure 2. Potential targets and strategies for
mesothelioma therapy that havebeenproposed
based on recent studies. PDGFR, platelet-
derived growth factor receptor.
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IFN-encoded adenoviruses. These trials showed that high
local concentrations of IFN-a or IFN-b were well tolerated
and induced strong cellular andhumoral antitumor immune
responses, leading to tumor cell death. Some patients with
mesothelioma experienced prolonged survival.

In summary, molecular therapies have not affected the
average survival of mesothelioma patients, although in
several trials 5% to 10% of the patients responded and
experienced prolonged survival. Investigators in clinical
trials normally look at averages, and therefore no significant
benefit can be detected for any therapy when the benefit
occurs in only a small fraction of patients. Thus, the chal-
lenge ahead of us is to identify the subset of patients who
will respond to a given type of therapy.

Targeting asbestos-induced inflammation to prevent
or treat mesothelioma

Chronic inflammation has been associated with an
increased risk of developing numerous types of cancer. In
this regard, daily treatment with aspirin for �5 years was
shown to reduce tumor burden in several common malig-
nancies (55), and results from animal experiments support
a beneficial role for anti-inflammatory therapies in meso-
thelioma (56). Thus, we hypothesize that prolonged aspirin
treatment may help reduce the incidence of mesothelioma
and other asbestos-related malignancies among high-risk
cohorts with either a lengthy history of exposure and/or
genetic predisposition.

On the basis of recent findings, it is tempting to speculate
that HMGB1 and the Nalp3 inflammasome act as critical
initiators of chronic inflammation in asbestos- and erionite-
exposed individuals, with the secretion of IL-1b and TNF-a
acting as the key downstream driving force. Therefore,
HMGB1, Nalp3, TNF-a, and IL-1b can all serve as potential
targets for inhibitors of asbestos-induced inflammation
leading to mesothelioma. Indeed, Hamada and colleagues
(57) showed that bronchoalveolar lavage fluid from
patients with idiopathic pulmonary fibrosis exhibited ele-
vated levels of HMGB1 and that treatment with an anti-
HMGB1 antibody prevented bleomycin-induced lung
fibrosis in mice. In addition to mesothelioma, several solid
tumors, including melanoma, prostate, pancreatic, breast,
and gastrointestinal cancers (42), display elevated levels of
HMGB1; therefore, therapies that seek to block HMGB1
signaling would likely prove effective in other cancer types
as well as in mesothelioma.

Treatment with an IL-1 receptor antagonist can protect
mice from developing fibrosis upon exposure to bleomycin
or silica (58). In a murine model of bleomycin- or silica-
induced pulmonary fibrosis, infusion with the human
recombinant soluble TNF receptor rsTNFR-b was effective
not only in preventing the development of pulmonary
fibrosis but also in the treatment of established fibrosis
(40). Similar results were observedwith the use of anti-TNF-
a antibodies (59). Specific U.S. Food and Drug Adminis-
tration–approved reagents that inhibit these molecules are
available. Anakinra, an IL-1 receptor antagonist, is used in
therapies for patients with autoimmune diseases and gout.

Infliximab, a chimeric human–mouse anti-TNF-a, and eta-
nercept, a soluble TNF receptor fusion protein, have both
been used to treat patients with rheumatoid arthritis and
other diseases, including plaque psoriasis and ankylosing
spondylitis. Glyburide, the most widely used sulfonylurea
drug for type 2 diabetes in the United States, inhibits the
Nalp3 inflammasome (60). Specific molecules that target
the activity of HMGB1 are anti-HMGB1 and anti-RAGE
antibodies, recombinant HMG Box A, and ethyl pyruvate,
an inhibitor of HMGB1 secretion (ref. 42; Fig. 2).

Early detection of mesothelioma is associated with
improved clinical outcomes (1). The finding of signifi-
cantly higher serum levels of HMGB1 in asbestos-exposed
individuals compared with cohorts of smokers with his-
tologically proved bronchial inflammation and dysplasia
(36) suggests that HMGB1 may be a potential marker of
exposure to carcinogenic mineral fibers. Moreover, solu-
ble mesothelin-related peptide (SMRP) and osteopontin
were proposed to be candidate markers for the early
detection of mesothelioma (i.e., before the appearance
of clinical symptoms).

Conclusions

Because the latency period from initial asbestos or erio-
nite exposure to disease progression is often decades long
(1), novel therapies that prevent or delay carcinogenesis in
exposed individuals could lead to a substantial decrease in
mesothelioma mortality. In light of our recent increased
understanding that asbestos carcinogenesis is linked to
chronic inflammation, we can design multiple strategies to
target inflammation in asbestos- and erionite-exposed indi-
viduals. Clinical and translational research focusingon such
strategies has the potential to reduce the impact of the
carcinogenic effect of asbestos and erionite exposure. More-
over, genetic testing for BAP1mutations in exposed cohorts
should help us identify genetically susceptible individuals
who have the highest risk of developing mesothelioma
(10). These individuals couldbe targeted for early detection,
for example, by monitoring HMGB1, SMRP, or other bio-
markers. Strategies that seek to prevent carcinogenesis in
asbestos/erionite-exposed, high-risk individuals would
have the most wide-reaching impact on the incidence of
this deadly cancer.
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