








with the highest overall IL13Ra2 expression levels (�40%
of cells positive) as detected by IHC (PBT015-UPN033,
PBT017, and PBT030), generated both TS and DIF/ADH
lines with correspondingly high IL13Ra2 expression (com-
pare with Fig. 2D and E). Likewise, patient tumors with low
IL13Ra2 levels (�20% positive cells) gave rise to cell lines
that lacked receptor expression (PBT008 and PBT009).
Importantly, these findings indicated that expression levels
of IL13Ra2 on expanded primary glioma cell lines are
consistent with its expression by the originating patient
tumor.However, on a cell-by-cell basis, IL13Ra2 expression

levels on glioma cells in situwere more variable, as detected
by IHC, than those of the corresponding donor-derived TS
or ADH cell lines (Fig. 2 vs. Fig. 3; refs. 16, 35). This
difference may be explained by the more heterogeneous
cellular composition of glioma tumors in situ.

IL13Ra2 expression renders GSCs susceptible to IL13-
zetakine–mediated T-cell killing

We next addressed whether IL13Ra2pos GSCs and differ-
entiated tumor lines display comparable sensitivity to CAR-
engineeredCTL-mediated killing. For these studies, primary
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Figure 2. IL13Ra2 expression on GSC and differentiated glioma cell lines. A, flow cytometric detection of IL13Ra2 on established glioma cell lines U251T,
U87 and T98. Daudi lymphoma is an IL13Ra2neg control cell line. Percentage positive cells are indicated in each histogram. B, Western blots detecting
IL13Ra2 for established glioma cell lines. Recombinant human IL13Ra2-Fc (10 and 100 ng) shows receptor-specific detection by the antibody.
C, qRT-PCR analysis depicting IL13Ra2mRNA expression by cell lines relative to U251T using primer sets spanning IL13Ra2 exons 1–2 and 6–7. Data were
normalized to actin. D, TS, serum-differentiated (DIF) and serum-expanded (ADH) cells analyzed by flow cytometry for expression of IL13Ra2 (grey
histograms); solid lines are secondary antibody alone. NT; not tested. E, Western blots detecting IL13Ra2, CD133, Olig2, GFAP, and a-actin for TS, DIF,
and ADH cell lines. ND, not detected.

Figure 3. IL13Ra2 expression on
primary patient-derived glioma
specimens. IHC detection of
IL13Ra2 on paraffin-embedded
patient tumor tissue. Sections were
scored blindly by a neuropathologist
for staining intensity (0 not detected;
1þ low; 2þ moderate; 3þ high), and
percentages of positive cells are
indicated.
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human IL13-zetakineþ CD8þ CTL lines (Supplementary
Fig. S2A and B) were evaluated for their ability to kill TS
and matched differentiated glioma lines in vitro. We
observed that autologous (UPN033) or allogeneic
(HD003) IL13-zetakineþ T-cell clones efficiently lysed
IL13Ra2pos PBT015-UPN033 stem-like TSs, as assessed by
chromium-release assay (Fig. 4A). For both autologous and
allogeneic CTLs, TSs were killed at least as well as matched
serum-differentiated (DIF) or serum-expanded (ADH) low-
passage primary lines, or established glioma line U87
(average difference in cytotoxicity at all E:T ratios 17% �
9% with killing of TS � DIFF/ADH lines). Lymphoblastic
(LCL) targets engineered to express the membrane-bound
agonistic antibody scFv-OKT3 (LCL-OKT3), which activates

T cells via engagement of the CD3 complex, served as a
reference target denoting the maximal activation potential
of a T-cell line. To establish that the capacity of IL13-
zetakine CTLs to target and kill IL13Ra2pos GSCs is not
specific to a particular TS line, we showed in a similar set of
experiments that IL13Ra2pos PBT017-4 and PBT030 TS,
DIF, and ADH cells were also recognized and killed inde-
pendently of differentiation status (Supplementary Fig S3).
In all cases, the stem-like TS lines were killed with compa-
rable potency as the serum-differentiated lines.

Following engagement of TS, DIF, ADH, or U87 targets,
IL13-zetakineþ CTL clones were also activated to produce
Tc1 cytokines INF-g and TNF-a (Fig. 4B, Supplementary Fig.
S4). CTL coculture with PBT015-UPN033 TSs resulted in
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slightly less Tc1 cytokine production as compared with
serum-differentiated (DIF) cells (average � SD decrease in
INF-g for TS vs. ADH and DIF is 42%� 7% and 14%� 2%,
respectively; average decrease in TNF-a for TS vs. ADH and
DIF is 58% � 2% and 45% � 13%, respectively). This
decrease in T-cell–mediated INF-g and TNF-a cytokine
release is observed on engagement of all IL13Ra2pos pri-
mary glioma lines tested (average 2- to 3-fold decrease)
(Supplementary Fig. S4).
Several lines of evidence confirmed that the IL13-

zetakineþ CTL killing and Tc1 cytokine responses we
observed are specific to engagement of IL13Ra2 tumor
antigen. First, IL13-zetakineþCTL clones were not activated
for killing or cytokine production when coincubated with
the IL13Ra2neg PBT003-4 TS and T98 glioma lines or the
IL13Ra2neg LCL line (Fig. 4A, B, and D, and data not
shown). Second, blocking CAR-IL13Ra2 engagement by
either preincubation of PBT015-UPN033 TS targets with
recombinant human IL13 (rh-IL13), or IL13-zetakineþCTL
with anti-IL13 antibody eliminated cytokine production
(Fig. 4C). Third, the parental UPN033 bulk CTL line, which
is not engineered to express the IL13-zetakine CAR, dis-
played negligible levels of killing (<10% 51Cr-release) and
cytokine production (<30 pg/mL INF-g and <5 pg/mL TNF-
a) when challenged with PBT015-UPN033 tumor targets.
These findings confirmed that expression of the IL13Ra2

tumor–associated antigen is necessary for IL13-zetakineþ

CTL killing (19). Importantly our data establishes that both
IL13Ra2pos GSCs and differentiated cells are targeted and
killed by IL13-zetakine engineered CTLs, and therefore cells
with stem/progenitor-like properties are not intrinsically
resistant to CTL-mediated killing.

IL13-zetakineþ CTL can ablate the tumor-initiating
activity of IL13Ra2pos GSCs in vivo
A hallmark characteristic of GSCs is their capacity to

initiate in vivo tumor formation at low cell numbers. To
address the possibility that a minor tumor-initiating sub-
population of IL13Ra2pos cells may evade IL13-zetakine–
mediated recognition, an in vivo tumor engraftment assay
was carriedout. This assay establishes that capacity ofCTL to
eliminate glioma tumor-initiating populations (i.e., the
functional definition of GSCs), by providing an in vivo
read-out of cell populations that resist CTL killing (see Fig. 6
of ref. 9 where antigen-negative tumor populations evaded
CTL recognition and initiated tumor). For this study,
PBT017-4 TSs were coinjected intracranially into NOD-scid
mice with either IL13-zetakineþ CTL, or a nonspecific CTL
line expressing a CD19-specific CAR, or PBS. Because as few
as 100 PBT017-4 TS cells can initiate highly invasive tumors
in NOD-scid mice (9), this assay is expected to detect a
minor tumor-initiating population (<0.1%) resistant to
IL13-zetakine–mediated CTL killing. We observed that
coinjection of IL13-zetakineþ CTL, but not PBS or control
CD19RþCTL, ablated the engraftment potential of PBT017-
4 cells (Fig. 5A). Similarly, IL13-zetakineþCTL, but not PBS
or control CD19Rþ CTL, also ablated the tumor-initiating
potential of the established glioma cell line U87 grown

under differentiating conditions (serum-containing
media; Fig. 5B). As a control for antigen specificity, we
showed that IL13-zetakineþ CTL do not ablate the
tumor-initiating activity of the IL13Ra2neg line, PBT003-4
TSs (Fig. 5C), consistent with the lack of in vitro killing of
PBT003-4 when cocultured with IL13-zetakineþ CTL
(Fig 4D). This study showed that IL13-zetakineþ CTL can
eliminate the tumor-initiating activity of both IL13Ra2pos

GSCs and differentiated subpopulations.

Regression of established GSC TS-initiated xenografts
after adoptive transfer of IL13-zetakineþ T cells

We next evaluated the capacity of IL13-zetakineþ CTL to
induce regression of established GSC TS-initiated tumors.
For these studies, we examined the antitumor efficacy of
IL13-zetakineþ T cells against IL13Ra2pos GSC TS lines
PBT030-2 and PBT017-4 (Fig. 2 and Supplementary Fig.
S5). To facilitate imaging of tumor growth kinetics, PBT030-
2 TSs were engineered by lentiviral transduction to express a
fusion protein consisting of EGFP and firefly luciferase
(ffLuc; EGFP-ffLuc; ref. 9). EGFP-ffLucþ PBT030-2 or non-
engineered PBT017-4 TS cells were orthotopically
implanted into the right forebrain of NSG mice. Five days
later, after tumor establishment, mice were treated intra-
cranially with 3 infusions of either IL13-zetakineþ CD8þ

CTL clone 2D7 or control CD19Rþ CD8þ CTL clone E8. By
comparing ffLucþ tumor flux over time (PBT030-2; Fig. 6A
and B) and by quantifying tumor volume 15 days after the
last T-cell treatment by IHC (PBT017-4; Fig. 6C and D), we
showed that IL13-zetakineþ CTL, as compared with control
CD19Rþ CTL, mediate statistically significant anti-glioma
activity against both PBT030-2- and PBT017-4–established
tumors.

The ability of IL13-zetakineþCTL to regressGSC-initiated
established glioblastoma tumors is consistent with our
previous observations that IL13-zetakineþ CTL can kill
IL13Ra2pos TS cells (Fig. 4) and ablate their tumor-initiating
activity (Fig. 5). For thosemice in which residual tumor was
detected following treatment with IL13-zetakineþ CTL, we
sought to understand the etiology of tumor escape by
evaluating the expression of IL13Ra2 in relationship to
stemness (Sox2 and Olig2) and differentiation (GFAP) by
IHC (day 15 post final T-cell treatment; day 28 post tumor
injection). We found that IL13-zetakineþ CTL- and control
CD19Rþ CTL–treated tumors express comparable levels of
IL13Ra2 (Fig. 6E), suggesting that residual tumors did not
evade therapy due to antigen loss. At this 15-day time point,
we were not able to detect any persisting CD3þ human T
cells by IHC (data not shown). Also, we detected compa-
rable levels of SOX2, Olig2, and GFAP (Fig. 6F), suggesting
that there is no major difference in the frequency of stem-
like versus differentiated cells in the recurrent tumor fol-
lowing IL13-zetakineþ CTL-mediated tumor targeting.
Although the largest IL13-zetakineþCTL–treated tumorwas
found in the leptomeninges (Fig. 6D), the significance of
this engraftment pattern is not clear as this highly invasive
PBT017-4 line (Fig. 5) is known to engraft at this anatomical
site. Taken together, these data indicated that exposure to
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IL13-zetakineþ CTL has the capacity to reduce tumor
growth and tumor burden of established IL13Ra2 expres-
sing tumors. At the same time, these data also suggested that
a more potent CARþ T-cell capable of sustained persistence
may be required to completely eliminate all IL13Ra2
expressing tumor cells.

Discussion
Although immunotherapy strategies targeting IL13Ra2

for brain tumors are being clinically pursued (21–24),
based on its selective expression on malignant versus nor-
mal brain tissue (15–18), the power of IL13Ra2-directed
therapies will depend, in part, on the ability of these
approaches to be effective against the highly tumorigenic
glioma cancer stem–like population (3, 4). Our data pro-
vide direct evidence that IL13Ra2 expression is not limited

to differentiated glioma cells and that IL13Ra2 targeting can
potentially eliminate the refractory GSC component of
malignant gliomas. We show that GSC TSs derived from
IL13Ra2pos glioma tumors express IL13Ra2 and that its
expression renders the IL13Ra2pos GSC population suscep-
tible to IL13-zetakineþCAR-engineered T-cell cytolytic lysis.
Importantly, in vitro GSC TSs were killed at equivalent
potency as matched differentiated glioma lines. We also
show that IL13-zetakineþ CTL ablate the in vivo tumor-
initiating activity of IL13Ra2pos GSCs and, further, mediate
robust antitumor activity and limit progression of estab-
lished IL13Ra2pos GSC TS-initiated intracranial tumors in
mice.

Although our work and others have shown that GSCs are
intrinsically susceptible to effector T-cell killing (7, 8, 9),
mechanisms to suppress and/or evade immune function
and effector T-cell killing are likely employed by GSCs.
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Recent studies suggest that GSCs may reduce T-cell activa-
tion–dependent proliferation and downmodulate T-cell
activation–dependent cytokine production (12, 37). We
also find that GSC TSs are less potent at stimulating IL13-
zetakineþ CTLs for antigen-dependent INF-g and TNF-a
cytokine production (Fig. 4; Supplementary Fig S4). The
underlying mechanism of these compromised functional-
ities and the consequences for antitumor efficacy remain to
be resolved. In addition, the malignant stem cell niche is
associated with secreted TGF-b and VEGF, as well as acti-
vated STAT3, important signals known to inhibit immune

responses and thusmay protect GSCs in established tumors
from efficient T-cell eradication (12, 38–40). Despite these
hurdles, our findings that CD8þ CTLs can be engineered to
successfully kill the otherwise therapeutically resistant GSC
population suggests that efforts to overcome these obstacles
are worthwhile.

Clinical trials for recurrent high-grade gliomas using
IL13-zetakine–redirected CTLs are in early feasibility/safety
stages, and although transient tumor regressions have been
observed, sustained regressions are still an unrealized out-
come (Jensen; unpublished and ref. 24). This study focused
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on thepotential barrier ofGSCs as a therapeutically resistant
reservoir of tumor cells. We provide evidence that disease
recurrence following IL13Ra2-directed therapies is not due
to the absence of IL13Ra2 expression by all GSC subpo-
pulations, but rather that other mechanisms of escape may
also be at play. Furthermore, we show that IL13-zetakineþ

CTLs can target and kill IL13Ra2pos GSCs and regress
established GSC-initiated tumors. However, for established
tumors, IL13Ra2 expressing glioma populations were not
completely eliminated, suggesting that a more powerful T-
cell product is needed. To this end, CAR-engineered T-cell
lines optimized for T-cell persistence and/or serial tumor
killing are under development (26, 41, 42).

In addition, clinical targeting of IL13Ra2pos cells may
selectively eliminate not only malignant cells, but also
cells within the microenvironment that are involved in
immune evasion. Of particular interest, tumor-infiltrating
macrophages (CD11b high/Gr-1 intermediate) have been
shown to upregulate cell-surface IL13Ra2 expression in
the tumor microenvironment and are stimulated by IL-13
to secrete TGF-b, resulting in inhibition of antigen-spe-
cific CTL function (43). Blocking induction of IL13Ra2
on tumor-infiltrated macrophages correspondingly inhi-
bits TGF-b production and restores the antitumor activity
of CD8þ T cells. In these ways, targeting IL13Ra2
expressed by other cells in the tumor microenvironment
may also enhance the efficacy of clinically targeting this
receptor.

Importantly, the heterogeneity of IL13Ra2 receptor
expression by high-grade gliomas, rather than persistence

of refractory GSC populations, is anticipated to be a critical
barrier to overcome for clinical responses (Figs. 2 and 3 and
refs. 16, 34, 35). A guiding principle now emerging from a
variety of clinical trials suggests that immunotherapeutic
approaches targeting single antigens will not be sufficient
for durable long-term antitumor responses. Our data show-
ing that IL13Ra2 is expressed by a subset of glioma stem-
like–initiating populations susceptible to cell immunother-
apy highlight the relevance of translational strategies target-
ing IL13Ra2 formalignant glioma, particularly when incor-
porated into combinatorial targeting approaches.
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