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Predicting Outcome by Images?

Dirk De Ruysscher

Features from CT, MRI, and PET scans are related to survival of patients with non–small cell lung

carcinoma. Individualized image-based tissue characterization allows a whole body view of all tumor

deposits and organs at risk. The time is ripe to embark on huge international studies aiming to

validate and implement this technology in clinical practice. Clin Cancer Res; 19(13); 3334–6. �2013

AACR.

In this issue of Clinical Cancer Research, Win and collea-
gues (1) present data that suggest that tumor characteristics
and, more specifically, textural heterogeneity on a CT scan
predict survival in patients with non–small cell lung cancer
(NSCLC).

The idea to characterize tissues on the basis of imaging is
obviously not new. In the early 1980s, attempts were
reported aiming at characterizing tissues and tumors to
predict response to treatment. The concept is indeed very
attractive:With one image, it would be possible to know the
prognosis of patients and to predict what the best therapy
would be, taking into account the features of the tumor and
healthy tissues at risk. Heterogeneity within a tumor or
between the primary tumor and its metastases could be
defined. Changes over time would be easy to investigate.

However, it became clear that bringing this idea into
clinical practice is difficult. Even a seemingly trivial exercise
like delineating a tumor mass proved to be difficult to
standardize (2). Inter-and intraobserver differences of up
to 300% have been reported when no strict standardized
protocols were used. A 10% to 30% variability is probably
the best that canbe achievedwithmanual tools. It should be
emphasized that even these far from optimal results can
only be achieved when strictly standardized and validated
technical protocols are applied.More recently, national and
international organizations have published thorough
guidelines for standardization, for example, for CT and
positron emission tomography (PET) scans. Thanks to the
dramatic improvement in image quality and the availability
of fast computers, automated segmentation algorithms
have been developed. For CT scans, the selection of ranges
of Hounsfield units (which represent the linear attenuation
coefficient of the X-ray beam by the tissue) has been used to
define tissue types. Calculation of the gradient of an image

can reveal the borders between tissue types. The develop-
ment of four-dimensional (4D)-CT scans that take into
account blurring artifacts due to motion has further
improved the accuracy for tissue characterization. It is likely
that dual-energy CT and, in the near future, spectral CT will
further boost tissue characterization.

At the same time, PET scan technology hasmoved toward
4Dacquisitions andhighly standardized procedures aswell.
PET scans nevertheless suffer from a lower resolution than
CT scans, and the information is highly dependent on the
tracer that is used. However, a nonspecific but biologically
sound tracer such as 18F-deoxyglucose (FDG) has been
shown not only to be prognostic for survival in many,
though not all series, but also enables the determination
of the areas within a single tumor that show differences in
sensitivity for radiotherapy (3). Obviously, recent results
with PET-labeled drugs such as 11C-docetaxel (4) and
11C-erlotinib (5), a technology that is useful for many
interesting small molecules (6), will further enhance the
use of PET scans for tumor characterization.

These technical developments have led many research
groups to look in more detail at the image characteristics of
tumors themselves. In general, texture onCTwas quantified
as mean gray-level intensity, entropy, and uniformity (7).
A relationship between texture features in NSCLC on non–
contrast-enhanced CT and tumor metabolism and stage
was reported (8). In metastatic renal cell carcinoma treated
with sunitinib, cedirinib, pazopanib, or regorafenib, CT
texture analysis reflecting tumor heterogeneity was an
independent factor associated with time to progression,
showing its potential as a predictive imaging biomarker of
response (9).

Fine-texture features are associated with poorer 5-year
overall survival rate in patients with primary colorectal
cancer (10). Entropy, uniformity, kurtosis, skewness, and
SDof the pixel distribution histogramwere derived fromCT
images, and eachparameterwas independent from the stage
predictor of overall survival rate.

Qualitative imaging parameters on CT and MRI scans
have been used to predict mRNA abundance variation, for
example, in brain tumors (11).

The studyofWin and colleagues (1) adds further evidence
that textural heterogeneity of the tumor indeed is correlated

Author's Affiliation: Department of Radiation Oncology, University Hos-
pitals Leuven/KU Leuven, Leuven, Belgium

Corresponding Author: Dirk De Ruysscher, Department of Radiation
Oncology, University Hospitals Leuven/KU Leuven, Herestraat 49, 3000
Leuven, Belgium. Phone: 32-16-347600; Fax: 32-16-347623; E-mail:
dirk.deruysscher@uzleuven.be

doi: 10.1158/1078-0432.CCR-13-1114

�2013 American Association for Cancer Research.

Clinical
Cancer

Research

Clin Cancer Res; 19(13) July 1, 20133334

on May 18, 2021. © 2013 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 28, 2013; DOI: 10.1158/1078-0432.CCR-13-1114 

http://clincancerres.aacrjournals.org/


with survival of patients with NSCLC. These investigators
built amodel for survival in a training set of 56 patients and
validated the model in an independent validation cohort
consisting of 66 individuals. Textural heterogeneity was
prognostic for survival in univariate analysis, whether based
on CT or on FDG-PET scans as well as diffusion-enhanced
CT measured permeability and stage. The maximal uptake
of FDG was not related to survival. In a multivariate anal-
ysis, permeability (P < 0.001) was the most important
survival predictor, followed by stage (P ¼ 0.001) and CT
textural heterogeneity (P ¼ 0.021).
It is conceivable that in the coming years we will witness

a growing body of evidence that multidimensional para-
meters derived from different imaging modalities will be
able to characterize tumors. The input may be plain scans;
functional imaging, such as perfusionparameters; ormolec-
ular imaging. CT, MRI, and PET will surely be complemen-
tary. In view of the remarkable heterogeneity among
patients, tumors, and metastases and the changes of the
tumor and its microenvironment over time, imaging will
probably become an essential component for therapy selec-
tion, together with other parameters, such as clinical
data and molecular signatures from tumor cells or DNA
from circulating lymphocytes. It remains to be seen which
features are specific for a given tumor or treatment and
which aremore generic. The latter would obviously simplify

research very much. The ultimate aim of this research
should be to create a framework for individualized
image-based tissue characterization for prognostic and pre-
dictive use (Fig. 1). This should not only include tumor
characterization but also take into account the tissues and
organs at risk for side effects. Only then can a truly indi-
vidualized therapeutic ratio be determined. Individualized
image-based tissue characterization will be of importance
for systemic and local therapy and may even be of interest
for screening and staging, for example, for the determina-
tion of small nodules. However, a huge international effort
is needed to accomplish this goal. Standardization, large
databases, and decision-support systems are key, as well as
prospective validation of the findings in randomized clin-
ical trials (12).

Current know-how allows this to happen at present. It is
the research community, the funding agencies, and com-
panies working together that will be able to address the
challenges and tackle them. At the very end, patients and all
stakeholders will benefit from this paradigm.
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