


To determine the effect of the PAPSS1-BRAF fusion on
MAPK signaling in cells, we expressed cDNAs encoding
FLAG-tagged wild-type (WT) BRAF, mutant BRAF
(V600E), WT PAPSS1, or the fusion in 293H cells. Cor-
responding lysates were probed by immunoblotting with
antibodies against phosphorylated and total forms of
MEK1/2 and ERK1/2, as well as against PAPSS1, FLAG,

and BRAF. Ectopic expression of PAPSS1-BRAF in 293H
cells led to increased levels of phosphorylated MEK1/2
and ERK1/2, similar to levels induced by BRAF V600E
(Fig. 2A). WT PAPSS1 did not induce MAPK pathway
activation (Supplementary Fig. S1). These data confirm
that the PAPSS1-BRAF fusion activates the MAPK signal-
ing cascade.

Activation of MAPK signaling by BRAF V600E is sensitive
to inhibition by both vemurafenib (a BRAFmutant-specific
inhibitor) and trametinib (a MEK inhibitor; ref. 3). To
determine if signaling induced by the BRAF fusion was
inhibited by these agents, we transfected 293H cells with
the V600E or PAPSS1-BRAF cDNAs and treated them with
vehicle control or increasing concentrations of vemurafenib
or trametinib for 2 hours. Immunoblotting studies with
the corresponding lysates showed that BRAF V600E-
induced MEK1/2 phosphorylation was effectively reduced
by vemurafenib, but MEK1/2 phosphorylation induced by
PAPSS1-BRAF was not. Trametinib, however, was effective
at reducing ERK1/2 phosphorylation in both V600E- and
PAPSS1-BRAF–expressing cells (Fig. 2B). These results
suggest that downstream signaling induced by the
PAPSS1-BRAF fusion could be abrogated by MEK but not
mutant-specific BRAF inhibitors.

Translational Relevance
Through comprehensive molecular tumor profiling, we

identified novel BRAF fusions in 2 of 24 patients with
melanoma lacking other known recurrent driver muta-
tions in BRAF, NRAS, KIT, GNAQ, and GNA11. Surrogate
kinase assays suggest that activated signaling induced by
BRAF fusion proteins is sensitive to mitogen-activated
kinase kinase (MEK)MAP–ERK kinase inhibition.We also
identified two candidate BRAF fusions in another 49 "pan-
negative" cases in The Cancer Genome Atlas skin cutane-
ous melanoma dataset. Thus, BRAF fusions represent a
new, potentially clinically relevant target in melanomas
possibly treatable with kinase inhibitors.

Figure 1. Detection of PAPSS1-BRAF fusion. Three representative spanning sequence reads from targeted RNA sequencing of the "pan-negative"melanoma
case show alignment of PAPSS1 (red text) to chromosome 4 and of BRAF (dark blue text) to chromosome 7. The break-point occurs in-frame between
exon 5 of PAPSS1 and exon 9 of BRAF. Below are schematics of wild-type BRAF (blue), wild-type PAPSS1 (red), and the fused PAPSS1-BRAF proteins.
TheAPS kinase domain of PAPSS1 and the serine–threonine (S/T) kinase domain of BRAF remain intact in the fused protein. APS, adenosine phosphosulfate;
CRD, cysteine-rich domain; ex, exon; RBD, Ras-binding domain; RKTR, Arg-Lys-Thr-Arg dimerization domain; WT, wild-type.
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To determine whether BRAF fusions are recurrent in mela-
noma, we interrogated 51 additional melanomas from var-
ious institutions genotyped with the FoundationOne�
assay. This cohort was enriched with cases negative for
BRAF mutations (V600), likely due to referral bias. Only 8
of 52 (15%) tumors harbored V600 changes, at least less
than half the expected percent in unbiased cohorts (1),
and 7 of 52 (15.4%) harbored non-V600 (D594, L597,
K601, etc.) changes. In addition to the PAPSS1-BRAF
fusion, we identified another BRAF fusion, this time
involving tripartite motif-containing 24 [TRIM24-BRAF;
inv(7)(q32-34q34); Table 1 and Supplementary Fig. S2].
This tumor was also "pan-negative" for other known "driv-
er"mutations (Fig. 3 and Supplementary Table S1). Similar
to PAPSS1-BRAF, ectopic expression of TRIM24-BRAF led
to activation of the MAPK pathway which was sensitive to
MEK, but not BRAF, inhibition (Supplementary Fig. S3).
Thus, in this cohort, BRAF fusions were present in 8%
[2 of 24, 95% confidence interval (CI), 1.2%–27.0%] of
"pan-negative" melanomas (Figs. 3 and 4; Supplementary
Table S1).

To extend these findings, we also analyzed RNA, whole-
genome, and whole-exome sequencing data from an inde-
pendent dataset available from The Cancer Genome Atlas
(TCGA) skin cutaneous melanoma dataset. In 2 of 49
(4.1%) "pan-negative" cases, we identified sequence reads
indicative of potential BRAF fusions, involving CDC27 and
TAX1BP1 as 50 partners (Supplementary Fig. S4). Consistent

with these findings, TCGA reverse phase protein array data
comparing levels of phosphorylated MEK1/2 in the tumors
harboring fusions versus those with BRAF, NRAS, KIT,
GNAQ, or GNA11 mutations revealed that the fusion cases
harbor phosphorylated MEK1/2 levels similar to, or greater
than, levels observed in BRAF or NRAS-mutant melanomas
(Supplementary Fig. S5). Collectively, these data suggest
that BRAF fusions exist in 4% to 8% of "pan-negative"
melanomas.

Discussion
The classification and treatment ofmelanomas by known

recurrent single-nucleotide driver mutation status in BRAF
(V600), NRAS (G12/13, Q61), KIT (W557, V559, L576,
K642, D816), GNAQ (Q209), and GNA11 (Q209; ref. 1)
has changed standard treatment practice by enabling ratio-
nally guided treatment. However, in our experience at
Vanderbilt (Nashville, TN), using an established SNaP-
shot-based assay in the clinic (1), approximately one third
of melanomas are still "pan-negative" for these mutations.
We recently determined that approximately 8% of cases
negative for these drivers harbor other activating mutations
in BRAF exon 15 (D594E/G/H/N/V, L597R/S/Q/V, and
K601E/I/N) rather than the better-known V600E/K/M/R/
D alterations (4), and we showed in a patient harboring a
BRAF L597 mutation that tumor regression could be
induced by a MEK inhibitor (4). Here, we have identified

Figure 2. Signaling induced by
PAPSS1-BRAF ismore sensitive to
MEK inhibition than BRAF
inhibition. A, immunoblotting of
lysates from 293H cells transfected
with vector (empty vector) or
plasmids encoding BRAF V600E-
FLAG or PAPSS1-BRAF-FLAG
demonstrate that the BRAF fusion
activates MAPK pathway signaling
similarly to BRAF V600E. B,
although MAPK pathway signaling
induced by expression of BRAF
V600E is sensitive to increasing
doses (0, 0.1, 0.5, 1, and 5 mmol/L)
of the BRAF inhibitor vemurafenib
(vem) or the MEK inhibitor
trametinib (tra), signaling induced
by PAPSS1-BRAF is more
sensitive to trametinib than
vemurafenib. kDa, kilodalton.

Table 1. BRAF rearrangements in "pan-negative" melanomas

Sample Detection method
BRAF exon
break

50 partner,
exon break

Spanning
pairs (n)

Split
reads (n)

FM-Mel29 FoundationOne� Exon 9 TRIM24, exon 9 200 37
FM-Mel30 FoundationOne�,

RNA Kinome Seq
Exon 9 PAPSS1, exon 5 15 5
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another subset of potentially clinically relevant "pan-neg-
ative" melanomas defined by BRAF fusions. Specifically,
we found two novel BRAF fusions (PAPSS1-BRAF and
TRIM24-BRAF) in 2 of 24 (8%) "pan-negative" melanomas
genotyped on an assay that examines the status of 182
cancer-related genes and 37 introns in 14 genes recurrently
rearranged in cancer. Ectopic expression of either fusion
activates the MAPK pathway (Fig. 2A, Supplementary Fig.
S3), and induced signaling is readily diminished by treat-
ment with the MEK inhibitor, trametinib (Fig. 2B, Supple-
mentary Fig. S3). Through mining TCGA skin cutaneous
melanoma dataset, we also identified two potential BRAF
fusions in another 49 "pan-negative" cases, indicating a
frequency of 4.1% in an independent cohort.
PAPSS1 is a bifunctional sulfurylase kinase, with an N-

terminal adenosine-50-phosphosulfate kinase domain and
a C-terminal ATP sulfurylase domain (5). Only the adeny-
lylsulfate kinase domain of PAPSS1 remains intact in the

PAPSS1-BRAF fusion described herein. TRIM24 is a tran-
scriptional coregulator of nuclear receptors such as the
retinoic acid receptor-a (RAR-a; ref. 6) and is known to
facilitate ubiquitination of p53 for proteasomal degrada-
tion (7). Interestingly, a version of TRIM24-BRAF fusion
was identified in the early 1990s in a cDNA library derived
fromamodel ofmouse hepatocellular carcinoma (6, 8), but
not identified in humans until now. In addition to BRAF,
TRIM24 is also fused to the kinase domains of FGFR1 in a
myeloproliferative disorder case (8p11 myeloproliferative
syndrome; ref. 9) and of RET in a case of papillary thyroid
cancer (10). Like PAPSS1-BRAF, we show that expression of
TRIM24-BRAF leads to activation of the MAPK pathway,
which is sensitive to MEK inhibition (Supplementary
Fig. S3).

Although BRAF fusions have been found in other cancers
(pilocytic astrocytoma, gastric adenocarcinoma, thyroid
cancer, prostate cancer, and melanocytic nevi; Fig. 5;

Figure 3. Schematic of themutation distribution in 52 patient melanomas genotyped by the FoundationOne� assay. Each column of boxes indicates a single
patient, where green boxes indicate the presence of amutation inBRAF, NRAS, KIT, GNAQ, and/orGNA11 and gray boxes indicate lack of mutations. Cases
with V600E/KBRAFmutations, non-V600BRAFmutations, BRAF fusions, and certainNRASmutations are indicated. Specificmutations for each case can be
found in Supplementary Table S1. No KITmutations were identified. Note the difference in the percentage of cases positive for BRAF V600 mutations in this
cohort versus those genotyped in Fig. 4, demonstrating that this cohort was enriched for cases lacking BRAF V600 alterations.

Figure 4. Molecular subsets
of melanoma. Pie chart
demonstrating the percentage
distribution of genes with clinically
relevant and recurrent driver
mutations in individuals with
melanoma, including non-V600
BRAFalterations (left), interrogated
on the Vanderbilt melanoma
SNaPshot assay (1). In this study,
we have demonstrated that BRAF
fusions occur in approximately 4%
to 8% "pan-negative" cases (right).
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refs. 11–18), to our knowledge, BRAF fusions have not yet
been functionally characterized in malignant melanoma. A
BRAF rearrangement was identified previously by break-
apart fluorescence in situ hybridization (FISH) in a single
malignantmelanoma in2010; however, insufficient sample
remained for follow-up analyses that might have identified
the fusion partner and allowed for its characterization (18).
In addition, an FCHSD1-BRAF fusion was identified in a
large congenital melanocytic nevus (LCMN; ref. 13). If left
untreated/unresected, LCMN can be a precursor to mela-
noma, but this is thought to occur in fewer than 5% of
LCMN cases (19). Notably, every BRAF fusion characterized
to date activates MAPK pathway signaling (11–16, 18) and,
when interrogated, had transforming abilities (11,
12, 15, 18). Because PAPSS1-BRAF and TRIM24-BRAF are
structured similarly to all other BRAF fusions (Fig. 5), and
because we show that both PAPSS1-BRAF and TRIM24-
BRAF activate MAPK pathway signaling (Fig. 2 and Supple-
mentary Fig. S3), we expect that these melanoma BRAF

fusions will also be transforming. Additional biological
studies outside the scope of this article are ongoing.

In protein fusions involving receptor tyrosine kinases
(RTK), the 50 partners usually encode coiled-coil domains,
which enable dimerization necessary for kinase activity
(20). In the case of BRAF fusions, AKAP9 (11) and TRIM24
are the only 50 partners that contain coiled-coil domains.
BRAF harbors its own small dimerization motif (Arg-Lys-
Thr-Arg, RKTR, and amino acids 506–509) spanning exons
12 and 13 (21), which is intact in all currently known BRAF
fusions (Fig. 5); therefore, the need for 50 partners with
dimerization ability may not be necessary for BRAF fusion
function. In full-length wild-type BRAF, modulation of the
RAS-binding domain (RBD) by activated RAS leads to BRAF
homo-/heterodimerization and activation (22). This nega-
tive regulatory RBD has been replaced by the various 50

partners in all known BRAF fusions (Fig. 5). Similarly, the
recently discovered BRAF V600E splice variants that induce
vemurafenib resistance harbor N-terminal exons and

Figure 5. BRAF fusions identified in melanoma and other cancer types. Schematics of wild-type BRAF (top) and all currently known BRAF fusions, including
those identified in this study (PAPSS1-BRAF and TRIM24-BRAF). All BRAF fusions break between exons 8 through 11, thus leaving the serine–threonine (S/T)
kinase domain of BRAF intact. CRD, cysteine-rich domain; ex, exon; RBD, Ras-binding domain; RKTR, Arg-Lys-Thr-Arg dimerization domain; WT, wild-type.
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mutant kinase domain exons, but RBD exons are spliced
out, allowing for constitutive dimerization at the RKTR
dimerization interface (23). Recently, Sievert and collea-
gues demonstrated that KIAA1549-BRAF fusion variants
can homodimerize with one another; introduction of a
dimer interface mutant (R509H) disrupts this interaction
(24). Future studies should ascertain the dimerization
properties of the various BRAF fusions.
In summary, through NGS analysis of a "pan-negative"

melanoma, we identified a novel PAPSS1-BRAF fusion. The
fusion protein activates the MAPK pathway, and the
induced downstream signaling is sensitive to MEK inhibi-
tion. Subsequent analysis of 51 additional melanomas (24
of which were "pan-negative") revealed a second fusion,
TRIM24-BRAF, that also activates MEK1/2 and ERK1/2. We
also identified two candidate BRAF fusions in TCGA
skin cutaneous melanoma dataset. Thus, BRAF fusions may
occur in 4% to 8% of the "pan-negative" melanoma pop-
ulation. Coupled with knowledge that the transforming
ability of multiple BRAF fusions has already been estab-
lished (11, 12, 15, 18), we believe that enough evidence
exists to raise awareness that BRAF fusions are present in this
"pan-negative" population and have implications for
MAPK pathway–targeted therapies currently in clinical
trials. Their presence may explain an unexpected clinical
response to MEK inhibitor therapy or assist in selecting
patients for MEK-directed therapy. Collectively, these bio-
chemical and genetic data define an additional molecular
subset ofmelanoma that should be routinely screened for in
the clinic, and knowledge about BRAF fusions inmelanoma
may provide insights into the mechanism of responses
to treatment with an expanding list of available kinase
inhibitors.
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